

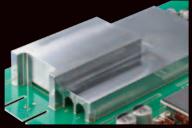
POWER ANALYZER PW6001

Power measuring instruments

Improve Power Conversion Efficiency

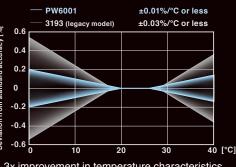
Industry-Leading Accuracy and Maximum 12 Channels* Hioki Power Analyzers Set Next Generation Standards for Power Efficiency Testing

Basic accuracy for power $\pm 0.02\%^*$

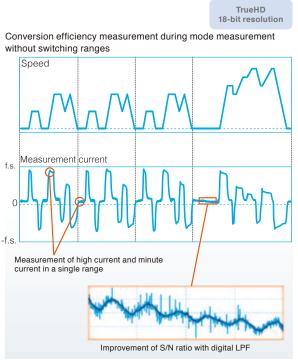

Achieving true power analysis

High accuracy, wideband, and high stability. The Hioki PW6001 combines the 3 important elements of power measurement and basic performance backed by advanced technology to achieve unsurpassed power analysis.

Strengthened resistance to noise and temperature fluctuations in the absolute pursuit of measurement stability

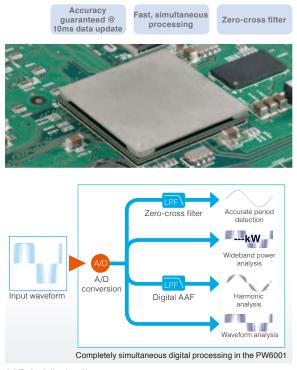

The custom-shaped solid shield made completely of finely finished metal and optical isolation devices used to maintain sufficient creepage distance from the input terminals dramatically improve noise resistance, provide optimal stability, and achieve a CMRR performance of 80 dB/100 kHz. Add the superior temperature characteristics of ±0.01%/°C and you now have access to a power analyzer that delivers top-of-the-line measurement stability.

Solid shield


Optical isolation device

3x improvement in temperature characteristics compared to legacy model

TrueHD 18-bit converter* measures widely fluctuating loads with extreme accuracy

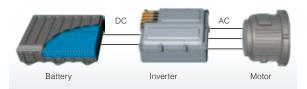

A built-in 18-bit A/D converter provides a broad dynamic range. Even loads with large fluctuations can be shown accurately down to tiny power levels without switching the range. Further, a digital LPF is used to remove unnecessary high-frequency noise, for accurate power analysis.

*True HD : True High Definition

Fast, simultaneous calculation functions achieved with Power Analysis Engine II

All measurements, including period detection, wideband power analysis, harmonic analysis, and waveform analysis, are digitally processed independently and with no effect on each other. Fast calculation processing is used to achieve a data update speed of 10 ms while maintaining maximum accuracy.

AAF: Antialiasing filter


Filter for preventing aliasing distortion in harmonic calculations

DC accuracy is indispensable for achieving correct efficiency measurements

For example, when measuring the efficiency of a DC/AC converter, not only AC accuracy but also DC accuracy are equally important. With the PW6001, a DC measurement accuracy of $\pm 0.02\%$ rdg. $\pm 0.05\%$ f.s.* delivers correct

and stable efficiency measurements.

	DC accuracy	±0.02% rdg.
--	-------------	-------------

Accuracy of efficiency is determined by AC accuracy and DC accuracy.

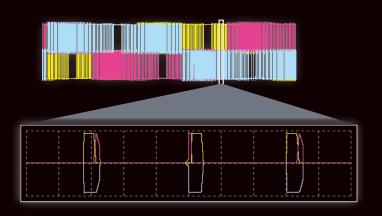
*Unit accuracy only

Get a combined accuracy of ±0.07% rdg. even with current sensor

Add $\pm 0.05\%$ rdg. accuracy of the current sensor to the PW6001's basic accuracy of $\pm 0.02\%$ rdg. to achieve top-of-the-line accuracy of $\pm 0.07\%$. Choose from a diverse array of sensors to cover very small currents from 10mA up to large 1000A loads.

High-accuracy AC/DC current sensors

DC, 0.1 Hz to 2 MHz frequency bandwidth

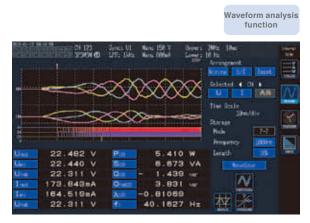

Broad and flat frequency characteristics

Power measurements across wide bandwidths are required for supporting high-speed switching devices such as SiC. Compared even to the Hioki 3390 Power Analyzer, the PW6001 is engineered with 10x the frequency band and sampling performance.

High-speed sampling of 5 MS/s for true frequency analysis

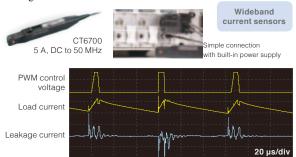
Measurements based on sampling theorem are required to perform an accurate power analysis of PWM waveforms. The Hioki PW6001 features direct sampling of input signals at 5 MS/s, resulting in a measurement band of 2 MHz. This enables analysis without aliasing error.

Dual sampling

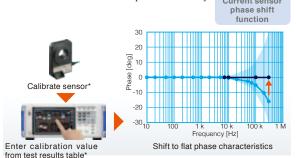

Achieve independent sampling of waveform recordings and power analysis. Sampling for waveform recordings can be set freely, while maintaining a power analysis of 5 MS/s.

Large capacity waveform storage

Enjoy 1 Mword x 6 channels of data storage for voltage and current, making it possible to record signals for up to 100 seconds (at 10 kS/s).

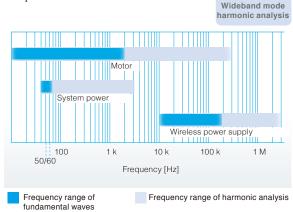

Analyze waveforms without an oscilloscope

In addition to voltage and current waveforms, torque sensor and encoder signals can also be displayed simultaneously. The PW6001 is also built in with triggers, pre-triggers, other triggers convenient for motor analysis such as for PWM waveforms, as well as encoder pulse triggers.

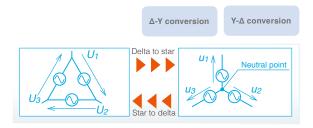

Wideband current probes supported

When combined with the HIOKI CT6700, it is also possible to measure minute currents of 1 mA. This is perfect for observing leakage current waveforms in inverters.

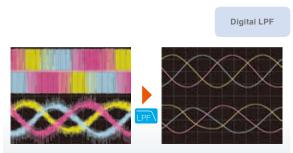
Built-in current sensor phase shift function


For accurate power measurement, both amplitude accuracy and phase accuracy specifications are important. Use of the phase shift function allows improvements in measurement accuracy for both high-frequency and low power factor signals. Enter the calibration value for the current sensor to optimize accuracy. Current sensor

*Calibration and test results tables can be purchased separately.


Harmonic analysis up to 1.5 MHz

Wideband harmonic analysis is provided as a standard feature to a max. 100th order for fundamental frequencies 0.1 Hz to 300 kHz and an analysis band of 1.5 MHz. Analysis of fundamental waves in motors and measurement of distortion rate in the transmission waveforms for wireless power supplies are now possible.


Unrestricted conversion of phase voltage and line-to-line voltage

Use of the Δ -Y conversion function allows for the calculation of phase voltage and phase power of 3-phase motors whose neutral points cannot be accessed. Further, the Y- Δ conversion function lets you calculate 3-phase 4-wire line-to-line voltage.

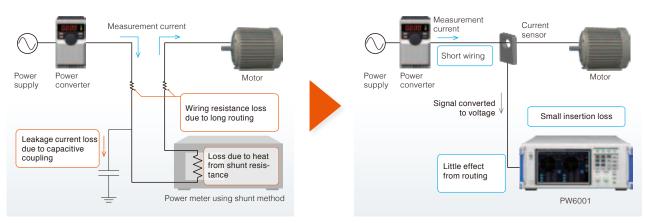
Digital LPF for displaying the waveform you want to view

Select a cutoff frequency for the measurement target. Digital LPF greatly reduces noise to let you display the waveform you want to view.

Display the waveforms for fundamental frequencies

Specially designed for current sensors to achieve highly precise measurement

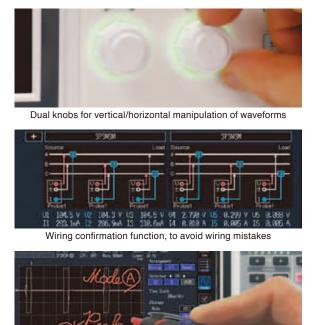
With direct wire connection method


The wiring of the measurement target is routed for connecting to the current input terminal. However, this results in an increase in the effects of wiring resistance and capacitive coupling, and meter loss occurs due to shunt resistance, all of which lead to larger accuracy uncertainty.

Measurement example using the direct wire connection method

A current sensor is connected to the wiring on the measurement target. This reduces the effects of wiring and meter loss, allowing measurements with wiring conditions that are close to the actual operating environment for a highly efficient system.

Measurement example using the current sensor method


Compared to the direct wire connection method, measurement with conditions closer to the actual operation environment of a power converter is achieved.

Dual knobs


Highly intuitive user interface

Seamless operability

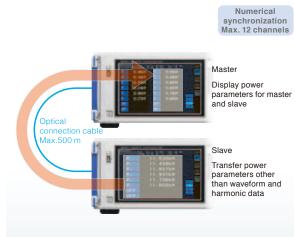
Time spent on operations is reduced, to allow focused concentration on analysis.

Enter handwritten memos on the screen, or use the onscreen keypad

Handwritten memo

On-screen keypad

Connection


confirmation screen

9-inch touch screen with soft keypad

Synchronization function for real-time connection of 2 units at a maximum distance of 500 m

Build a 12-channel power meter using "numerical synchronization"

For multi-point measurements, use the numerical synchronization function to transfer power parameters from the slave device to aggregate at the master in real-time, essentially enabling you to build a 12-channel power analysis system

- Real-time display of slave instrument measurement values on master instrument screen

- Real-time efficiency calculations between master/slave
- Save data for 2 units on recording media in master instrument

Simply transfer waveforms with "waveform synchronization"

Achieve real-time* transfer of 5 MS/s 18-bit sampling data. Measurement waveforms on the slave instrument are displayed without modification on the master unit, paving the way for new applications for power analyzers, such as measurement of the voltage phase difference between two

separate devices. synchronization

/ax.500 m

Master Display max. 6 channels of waveforms for master and slave

Waveform

Slave Transfer waveform data for max. 3 channels

- Real-time display of slave instrument waveforms on master instrument screen - Harmonic analysis and fundamental wave analysis for master

- instrument and slave instrument Simultaneously measure waveforms on master device while using the slave

to trigger

*For both master instruments and slave instrument, waveform synchronization operates only when there are 3 or more channels. Max. ±5 sampling error

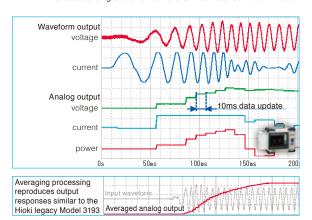
(PW6001-11/-12/-13/-14/-15/-16)

Models with motor analysis & D/A output

Diverse motor analysis functions

CH A ANALOG PULSE 20V	0-50V
CH B ANALOG PULSE 20V	0-50V-1=

Enter signals from torque meters and speed meters to measure motor power. In addition to motor parameters such as motor power and electrical angle, output signals from insolation meters and wind speed meters can also be measured.

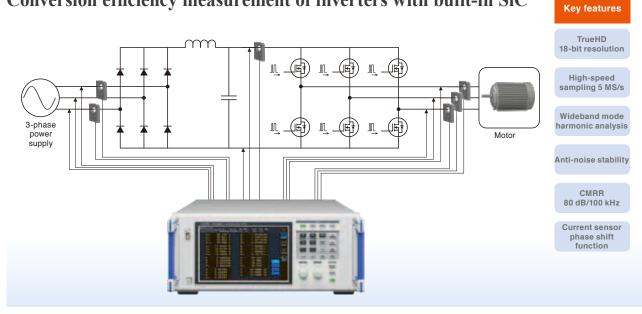


CHD	_		
	Single Motor analysis	Dual Motor analysis	Independent input for motor analysis
ch A	Torque	Torque	Voltage/ Pulse
ch B	Encoder A phase signal	Torque	Voltage/ Pulse
ch C	Encoder B phase signal	RPM	Pulse
ch D	Encoder Z phase signal	RPM	Pulse
Measurement targets	Motor x 1	Motor x 2	Pyranometer/ anemometer and other output signals
Measurement parameters	Electric angle Rotation direction Motor power RPM Torque Slip	Motor power x 2 RPM x 2 Torque x 2 Slip x 2	Voltage × 2 & Pulse × 2 or Pulse × 4

D/A output supporting waveform output

Output analog measurement data at update rates of up to 10ms. Combine with a data logger to record long-term fluctuations, and use the built-in waveform output function to output voltage and current at 1 MS/s*.

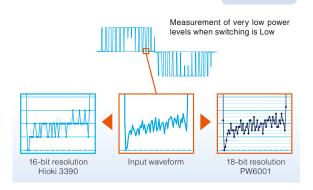
		D/A analog output	D/A waveform output	
Analog output	Analog output Analog output x 20 channels			
Waveform output	Waveform output x max. 12 channels* & analog output x 8 channels			
* Varies a	ccording to the nu	mber of channels ins	talled in the PW6001	



*During waveform output, accurate reproduction is possible at an output of 1 MS/s and with a sine wave up to 50 kHz.

Conversion efficiency measurement of inverters with built-in SiC

TrueHD


18-bit resolution

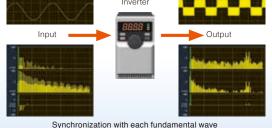
SiC measurement achieved with high resolution

High resolution is required for the high precision measurement of PWM waveforms for SiC semiconductors with low ON resistance. TrueHD 18-bit is achieved at a level of

precision that has never been seen before.

Detailed analysis of PWM waveforms

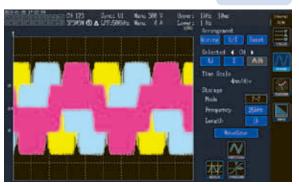
A cursor readout function*, zoom function*, and trigger/ pre-trigger function, which are not available on the Hioki 3390, are built-in on this unit. You can use the touch screen and dual knobs for unrestricted analysis of waveforms.

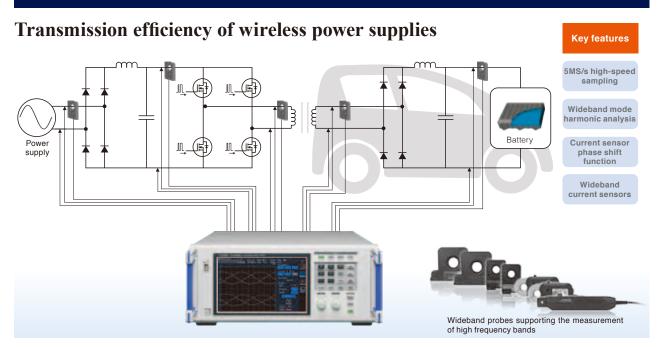

*Available soon.

Line-to-line voltage waveform and line current waveform for 3-phase motor

Simultaneous harmonic analysis for input/output

Analyze harmonic data that is synchronized to the fundamental waveforms of both the input and output of an inverter.


A maximum of 6 systems can be analyzed simultaneously. Max. 6 systems Simultaneous harmonic analysis


Observe phase voltage waveforms

Use the Δ -Y conversion function to display the calculations for phase voltage at the waveform level from the line-to-line voltage of the motor, enabling you to analyze the harmonics of the phase voltage waveforms.

 $\Delta\text{-}Y \text{ conversion}$

Phase voltage waveform using $\Delta\text{-}Y$ calculation

Harmonic analysis of transmission frequency

Measure the efficiency of wireless power supply devices such as those found in electric vehicles. Use of the wideband harmonic analysis function up to a fundamental wave of 300 kHz allows the analysis of waveform distortion rate

and harmonic waves in the vicinity of 100 kHz used for wireless power transmission. Wideband mode

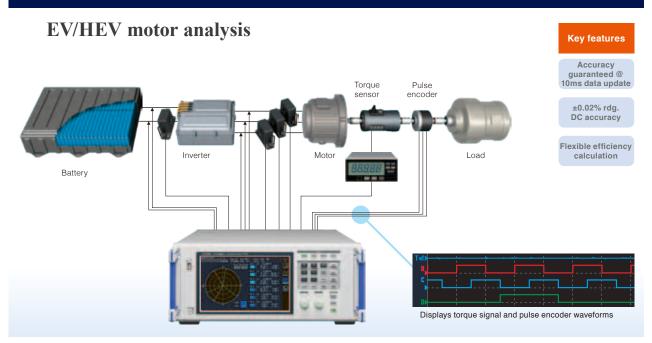
201-SC	* # 9 %	04-1 1929 - 45	Synet UL UPP: 000	Nero See 1	Uppert 2012 Convert 1345	She 2000	Descript
ði,	0.919	01. :	6.000Hz	tinu: + 172	193 V Unat	12.055 2	E
ħ	170.886		1.41	7 21:	0.382		Canada Canad
2 :	0.066		0.029	3 22:	0.022		N
34	18.940		0.98) 21:	0.314	01.1	-
49	0.046		0.02	20	0.023	10m	1
\$	6.855		0.75	新	0.297		
fic	0.039		0.034			Content:	-
T	3.508		0.592	2		Contra 1	
- 82	0.036		0.03			MA Drder	
*	2.117		0.466			2545	
105	0.018	20	0.020	0			

Save data with a single touch

Use the [SAVE] key to save numerical data, and the [COPY] key to copy the screen. You can also enter comments on the saved data.

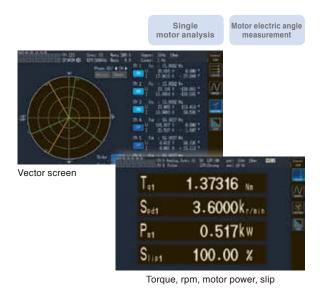
Accurate measurement of low power factor power

With wireless power supplies, the power factor drops due to the inductance component of the sending/receiving elements of energy. Use of the phase shift function in the PW6001 lets you accurately measure both high-frequency and lower power factor power.


Enter phase calibration values for each frequency to correct high-frequency phase characteristics.

One-touch settings take you to measurement immediately

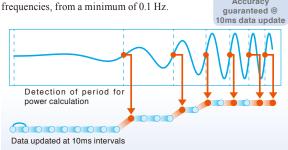
The built-in easy setup function allows you to simply select the type of measurement line and immediately start measurement using the automated optimum settings.



Advanced electrical angle measurement function

The PW6001 features a built-in electric angle measurement function required for the measurement of motor parameters in high-efficiency synchronized motors and the analysis of vector control via dq coordinate systems. Make real-time measurements of phases for voltage and current fundamental wave components based on encoder pulses. Further, zero-adjustment of the phase angle when induced voltage occurs allows phase measurement at the induction voltage standard. Finally, the PW6001 can detect the forward/reverse from A phase and B phase pulses to enable 4-quadrant analysis of torque and RPM.

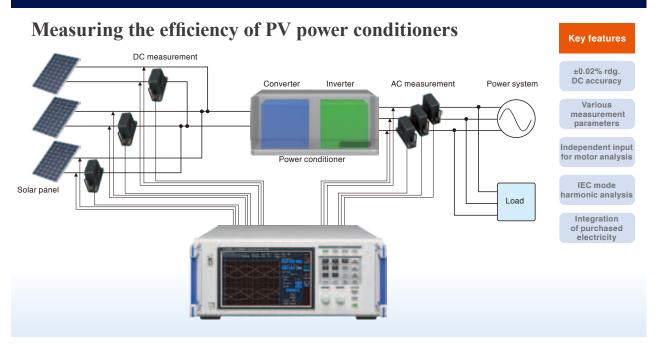
Rackmount support


Optimal full rack size for test benches and production inspection lines

Full rack size

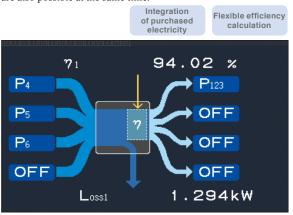
Fast 10 ms calculation of power in transient state

Measure power transient states, including motor operations such as starting and accelerating, at 10ms update rates. Automatically measure and keep up with power with fluctuating

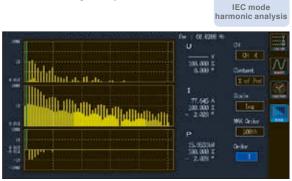

Automatic following of fundamental wave even if the frequency fluctuates, from low to high frequencies

Simultaneous measurement of 2 motor powers

The PW6001 is engineered with the industry's first built-in dual mode motor analysis function that delivers the simultaneous analysis of 2 motors. Simultaneous measurement of the motor power for HEV driving and power generating is now possible.


generation is now possible.

Example of 2 motor measurement


Assess efficiency and loss at a glance

In addition to the measurement of power generated by solar cells, efficiency rate of conditioners, loss, and the measurement of power from purchased electricity when power systems are linked are also possible at the same time.

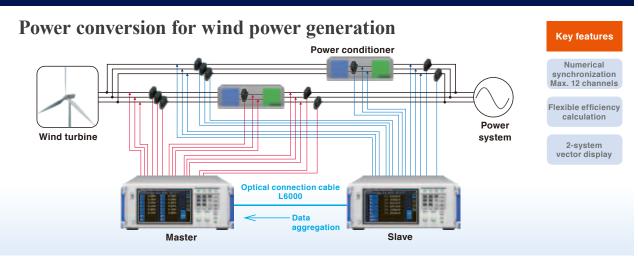
Harmonic analysis, important for linking systems

Conveniently evaluate according IEC61000-4-7 using the builtin IEC standard mode. You can also limit the number of THD calculations as required by the standard.

Confirm harmonic wave conditions on a bar graph at a single glance

Power conditioner testing

Parameters required for power conditioners, such as fundamental wave reactive power Qfnd, DC ripple rate, and 3-phase unbalanced rate, can be measured and displayed simultaneously. The required measurement data can be viewed at a glance, improving test efficiency. Various


			parameters
1175-71 2790	3 Since UI Auto 598 V Univ 10 L25568/m Auto 8864 Law	e Dia C Dia	
P₄	8.396k	W	DC power (panel output)
P 123	7.850k	W	3-phase power (power conditioner output)
7+	93.498	%	Conversion efficiency
Urfa	0.212	%	Ripple rate
f i	50.3187	Ηz	Frequency
Uthdi	2.390	%	Voltage total harmonic distortion
Uunbt 25	0.306	%	Unbalance rate
Qfnd125	5.074	var	Fundamental wave reactive power

measurement

Measure output from environmental sensors

Using the independent input mode in the motor analysis function, you can measure the analog voltage signals from environmental testing devices such as insolation meters, thermometers, wind speed meters, and light meters, on a maximum

speed meters, and light meters, on a maximum of 2 channels. The signals can be recorded at the same time as power. Analog signal Pulse signal Light meter Light meter Insolation meter Wind speed meter

Simultaneous analysis of system and power generation

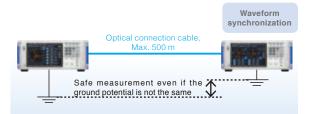
With the dual vector display, you can see the 3-phase balancing conditions for both the system and power generation at a glance.

Measure the efficiency of power conditioners

By using the numerical synchronization function, you can take measurements with complete synchronization of power conditioners for 2 systems. All power parameters can be aggregated on the master instrument, and the efficiency for each or the overall efficiency can be calculated and displayed.

Application 6

Test and evaluate substations, plants and railroads

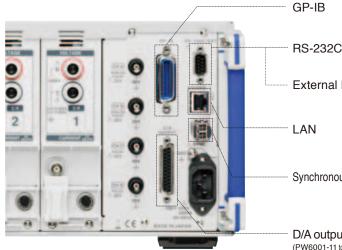

2-system

vector display

Measure phase difference between 2 separate points

Use the waveform synchronization function to measure the phase relationship between 2 points separated by a maximum distance of 500 m. Due to insulation with an optical connection cable, measurement can be performed safely even if the ground potential between the 2 points is not the same.

D/A output waveforms captured 500m away


Transfer voltage/current waveforms taken by the slave instrument located as far as 500m away and output the signals from the master device. When combined with a Hioki MEMORY HiCORDER, timing tests and simultaneous analysis of multiple channels for 3-phase power are possible.

12

 * The waveform that is output has a delay of 7 μs to 12 $\mu s,$ depending on the distance.

Interface

Command control*
 RS-232C
 View data in free dedicated application

 Command control*

 External I/O
 START/ STOP/ DATA RESET control

 Terminals shared with RS-232C, ±5 V/200 mA power supply possible

 LAN
 Fast Gbit LAN supported, command control*

 View data in free dedicated application

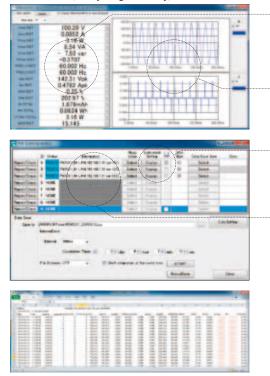
 Synchronous control
 Optical connection cable connector, Duplex-LC (2-core)
 D/A output

 Switching for 20 channels of analog output or maximum 12 channels of waveform + 8 channels of analog ouput

- View data in free dedicated application

* Download the Communications Command Instruction Manual from the Hioki website.

- USB flash drive interface
- Save waveform data/measurement data (csv) and screen captures (bmp)
- Real-time save of interval data (csv) at a maximum speed of 10ms


(Available soon)

- Save interval data, for transfer later to USB flash drive

PC Communication Software – PW Communicator

Internal memory

PW Communicator is an dedicated application software for communicating between a PW6001 power meter and a PC. Free download is available from the Hioki website. The application contains convenient functions for setting the PW6001, monitoring the measurement values, acquiring data via communication, computing efficiency, and much more.

LabVIEW Driver (Available soon)

Value monitoring

Display the PW6001's measurement values on the PC screen. You can freely select up to 64 values, such as voltage, current, power, and harmonics.

Waveform monitoring

Monitor the voltage, current, and waveforms measured by the meter right on the PC screen.

Meter setting Configure the connected PW6001 from the PC screen.

Synchronous measurement

Compute the input/output efficiency of a power converter and similar operations when using multiple units of PW6001. In addition to the PW6001, you can also batch control other Hioki power meters, such as the PW3335, PW3336, and PW3337.

Saving data as CSV file

Record 180 or more measurement data to a CSV file at fixed intervals. The shortest interval between recordings is 200 ms.

PW Communicator Specifications

Availability	Free download from the Hioki website
Operating environment	PC/AT-compatible
OS	Windows 8, Windows 7 (32/64-bit)
Memory	2GB or more recommended
Interface	LAN, RS-232C, GP-IB

A LabVIEW driver compatible with the PW6001 will enable you to acquire data and build measurement systems. (LabVIEW is a registered trademark of National Instruments Corporation.)

Basic Specifications Power measurement

Measurement lines), 1-phase/3-wire (2M 3V3A 3P3W3		ire (3PAM)			
			2M, 3V3A, 3P3W3		1	CLIC		
	CH1	CH2	CH3	CH4	CH5	CH6		
Pattern 1	1P2W	1P2W	1P2W	1P2W	1P2W	1P2W		
Pattern 2	1P3W / 3		1P2W	1P2W	1P2W	1P2W		
Pattern 3	1P3W / 3	P3W2M	1P2W	1P3W/3	3P3W2M	1P2W		
Pattern 4	1P3W / 3	P3W2M	1P3W /	3P3W2M	1P3W/3	3P3W2M		
Pattern 5	3P3	W3M / 3V3A	/ 3P4W	1P2W	1P2W	1P2W		
Pattern 6	3P3	W3M / 3V3A /	/ 3P4W	1P3W/3	3P3W2M	1P2W		
Pattern 7		W3M / 3V3A			W3M / 3V3A / 3I			
			ations, select 1P3V					
			ations, select 3P3V		P4W.			
Number of	1	2	3	4	5	6		
channels Pattern 1	1	1		1	1	1		
Pattern 2		~			<i>v</i>	<i>·</i>		
Pattern 3	-			~	~	<i>✓</i>		
	-	_	-	-	-			
Pattern 4	-	_	-		-			
Pattern 5	-	-	1	1	1	1		
Pattern 6	-	-	-	-	1	1		
Pattern 7	-	-	-	-	-	1		
			at can be selected		umber of channe	ls:		
	[√] Can b	a selected, [-]	Cannot be selecte	ed				
Number of input chanr	els Max. 6 cha	innels: each in	put unit provides 1 cl	hannel for simultar	neous voltage and	current input		
input terminal profile								
	Voltage Probe 1		n terminals (safety ated connector (MI					
	Probe 2		metal) + power sup					
Probe 2 power supply	+12 V ±0.5	5 V, -12 V ±0.5	V, max. 600 mA, u	p to a max. of 700) mA for up to 3 ch	nannels		
nput method			unit Photoisolate					
			unit Isolated inpu					
/oltage range	6 V / 15 V	/ 30 V / 60 V	/ 150 V / 300 V / 6	00 V / 1500 V				
Current range								
(Probe 1)			4 A / 8 A / 20 A			A sensor)		
			/ 80 A / 200 A) A sensor)		
		/5A/10A/2				A sensor)		
) A sensor)		
	20 A / 40	10 A / 20 A / 50 A / 100 A / 200 A / 500 A (with 500 A sensor) 20 A / 40 A / 100 A / 200 A / 400 A / 1 kA (with CT6865)						
Probe 2)	1 kA/2 k	1 kA / 2 kA / 5 kA / 10 kA / 20 kA / 50 kA (with 0.1 mV/A sensor)						
			I kA / 2 kA / 5 kA		nV/A sensor)			
			A / 200 A / 500 A		mV/A sensor; with	1 3274 or 3275)		
		5 A / 10 A / 20			0 mV/A sensor; wi			
		100 mA / 200 mA / 500 mA / 1 A / 2 A / 5 A (with 1 V/A sensor; with CT6700 or (0.1 V / 0.2 V / 0.5 V / 1.0 V / 2.0 V / 5.0 V range)						
Power range		(0.1 V / 0.2 V / 0.5 V / 1.0 V / 2.0 V / 5.0 V range) 2.40000 W to 4.50000 MW (depending on voltage and current combinations)						
Crest factor		2.40000 W to 4.50000 MW (depending on voltage and current combinations) 3 (relative to voltage/current range rating);						
Crest lactor		3 (relative to voltage/current range rating); however, 1.33 for 1500 V range, 1.5 for 5 V Probe 2 range						
	300 (relat	ive to minimu	m valid voltage an	d current input);				
	however,	133 for 1500	V range, 150 for 5	V Probe 2 range				
Input resistance (50 Hz / 60 Hz)	Voltage i		4 MΩ ±40 kΩ					
(50 112 / 60 112)	Probe 1 i	nputs	1 MΩ ±50 kΩ	Probe 2 inp	outs 1 M	Ω ±50 kΩ		
Maximum input voltaç	ye Voltage i	nputs	1000 V, ±2000 V	/peak (10 ms or I	ess)			
			Input voltage fre			50 - f) V		
			Input voltage fre Unit for f above:		2 10 5 10172, 50 0			
	Probe 1 i	nputs	5 V, ±12 Vpeak (10 ms or less)				
	Probe 2 i	nputs	8 V, ±15 Vpeak (
Maximum rated volta	na ta Valtaga ir	nut torminal	(50 117/60 117)					
Maximum rated volta earth			(50 Hz/60 Hz) d transient overvo	ltage: 6000V				
			ed transient overvo					
Measurement method	Voltage/c	urrent simulta	aneous digital sam	pling with zero-c	ross synchroniz	ed calculation		
Sampling	5 MHz / 1	8 bits						
Frequency band	DC, 0.1 H	z to 2 MHz						
Synchronization	0.1 Hz to 2	2 MHz						
requency range								
Synchronization sour	ce U1 to U6,	I1 to I6, DC (1	fixed at data updat	e rate),				
		Ut to U6, I1 to 16, DC (fixed at data update rate), Exit to Exi2 The zero encoded of the upperform often people through the zero encode filter is update.						
		The zero-cross point of the waveform after passing through the zero-cross filter is used as the standard for U or I selection.						
Data update rate		10 ms / 50 ms / 200 ms						
Data update rate			, eraging, the data ι	update rate varie	es based on the	number of ave		
	aging iter	ations.						
LPF			10 kHz / 50 kHz / 10					
			g LPF + digital IIR f :0.1% rdg. to the ac		h characteristics	equivalent)		
			s that are less than		of the set freque	ency.		
Polarity detection vol			ing comparison		. 1-			
				narent nowor (0)	reactive power			
Measurement parame			active power (P), ap quency (f), efficienc					
	ripple fact		nt integration (Ih), p					
	peak (lpk)							
	nt Voltage, c	urrent, powe	r: 1% to 110% of ra	inge				
Effective measureme range				inge				
	ge Select fro	m OFF / 0.1%	f.s. / 0.5% f.s.			ut		
ange	ge Select fro When set	m OFF / 0.1% to OFF, a val		ed even when re				

	adjustment	warmant warman	
	Within the effective measure		
		Voltage (U)	Current (I)
DC	±0	.02% rdg. ±0.03% f.s.	±0.02% rdg. ±0.03% f.s.
0.1 Hz ≤ f < 30	Hz ±	0.1% rdg. ±0.2% f.s.	±0.1% rdg. ±0.2% f.s.
30 Hz ≤ f < 45		.03% rdg. ±0.05% f.s.	±0.03% rdg. ±0.05% f.s.
45 Hz ≤ f ≤ 66		.02% rdg. ±0.02% f.s.	±0.02% rdg. ±0.02% f.s.
66 Hz < f ≤ 1 k			
		03% rdg. ±0.04% f.s.	±0.03% rdg. ±0.04% f.s.
1 kHz < f ≤ 50 k).1% rdg. ±0.05% f.s.	±0.1% rdg. ±0.05% f.s.
50 kHz < f ≤ 100		01×f% rdg. ±0.2% f.s.	±0.01×f% rdg. ±0.2% f.s.
100 kHz < f ≤ 500	0 kHz ±0.0	008×f% rdg. ±0.5% f.s.	±0.008×f% rdg. ±0.5% f.s.
500 kHz < f ≤ 1	MHz ±(0.0	021×f-7)% rdg. ±1% f.s.	±(0.021×f-7)% rdg. ±1% f.s.
Frequency ba	nd 2	MHz (-3 dB, typical)	2 MHz (-3 dB, typical)
		Active power (P)	Phase difference
DC	±0.	02% rdg. ±0.05% f.s.	-
0.1 Hz ≤ f < 30	Hz ±	0.1% rdg. ±0.2% f.s.	±0.1°
30 Hz ≤ f < 45		.03% rdg. ±0.05% f.s.	±0.05°
			±0.05°
45 Hz ≤ f ≤ 66		02% rdg. ±0.03% f.s.	
66 Hz < f ≤ 1 k		.04% rdg. ±0.05% f.s.	±0.05°
1 kHz < f ≤ 10 k	(Hz ±0	0.15% rdg. ±0.1% f.s.	±0.4°
10 kHz < f ≤ 50	kHz ±0	0.15% rdg. ±0.1% f.s.	±(0.040×f)°
50 kHz < f ≤ 100	kHz ±0.0)12×f% rdg. ±0.2% f.s.	±(0.050×f)°
100 kHz < f ≤ 500		009×f% rdg. ±0.5% f.s.	±(0.055×f)°
500 kHz < f ≤ 1 l		47×f-19)% rdg. ±2% f.s.	±(0.055×f)°
500 KH2 < 1 S 11	10.0	47 x1-13) /6 Tug. ±2 /6 1.3.	±(0:055×1)
	±0.2° to the phase at of - The accuracy figures to to 10 Hz are reference - The accuracy figures to from 10 Hz to 16 Hz ar	or above 10 kHz. for voltage, current, active p values. for voltage, active power, ar e reference values.	e power when using Probe 2, and a power, and phase difference for 0.1 nd phase difference in excess of 220
	The accuracy figures (22000/f [kHz]) V for v: Add ±0.02% rdg. for v reference values). Even for input voltage resistance temperature	t 30 kHz < f ± 100 kHz are r to routage, active power alues of 1 such that 100 kHz other and active power at us that are less than 1000 Ne to f 500 V, add the following 0.3° 0.5° ±1° Accuracy Voltage accuracy + current at Apparent power accuracy + ($\sqrt{2.69 \times 10^{-7} \text{ st} + 1002 - \lambda^2}$ ϕ of other than ±90°: $\pm \left[1 - \frac{\cos(\phi + \text{phase differenc}}{\cos(\phi)} + 0 \right]$	r, and phase difference in excess <pre><rd 1="" =="" are="" mhz="" pre="" reference="" values.<=""> <pre>or above 1000 V (however, figures a</pre> V, the effect will persist until the inp to the phase difference accuracy: </rd></pre> couracy ±10 dgt. $\overline{r} - \sqrt{1-\lambda^2}$) × 100% f.s. e accuracy) × 100% rdg. ± 50 dgt.
	The accuracy figures (22000/f (kHz)) V for v: Add ± 0.02% rdg, for v reference values). Even for input voltage resistance temperatur For voltages in excess 500 Hz <1 ≤ 5 kHz: ± 5 kHz <1 ≤ 20 kHz: ± 20 Hz <1 ≤ 20 kHz: ± Apaarent power Apaarent power Power factor Waveform peak	tt 30 kHz < f = 100 kHz are r is for voltage, active power alues of f such that 100 kHz of a such that 100 kHz e falls. of 600 V, add the following 0.3° 0.5° ±1° Accuracy Voltage accuracy + current at Apparent power accuracy + ($\sqrt{2.69 \times 10^{-5} \text{ t} + 1.002 - \lambda^2}$ ϕ of dher than ±90°: ±00 (ϕ + phase difference a Voltage/current RMS accuracy Voltage/current RMS accuracy	reference values. r, and phase difference in excess r, and phase difference in excess or above 1000 V (however, figures a v, the effect will persist until the inp to the phase difference accuracy: $\frac{1}{r_{-}} \sqrt{1-\lambda^{2}} \times 100\% \text{ f.s.}$ e accuracy) × 100% rdg. ± 50 dgt. ccuracy x 100% f.s. ±50 dgt. cy ±1% f.s.
	The accuracy figures (22000/f [kHz]) V for vi (22000/f [kHz]) V for vi reference values). Even for input voltage resistance temperatur For voltages in excess 500 Hz < 1 5 kHz < 1 5 kH	t 30 kHz < f = 100 kHz are r for voltage, active power alues of f such that 100 kHz oltage and active power at s that are less than 1000 N f alls. of 600 V, add the following 0.3° 10° 10° 10° 10° 10° 10° 10° 10° 10° 10	reference values. r, and phase difference in excess r, and phase difference in excess or above 1000 V (however, figures a v, the effect will persist until the inp to the phase difference accuracy: couracy ±10 dgt. $\overline{-} \sqrt{1-\lambda^2} \times 100\% \text{ f.s.}$ the accuracy) × 100% rdg, ±50 dgt. ccuracy) × 100% f.s. ±50 dgt. ccuracy) × 100% f.s. ±50 dgt. ccuracy) × 100% f.s. ±50 dgt.
Effects of temperature and humidity	The accuracy figures (22000/f (kHz)) V for v: Add ± 0.02% rdg, for v reference values). Even for input voltage resistance temperatur For voltages in excess - 500 Hz <1 ≤ 5 kHz: ± - 5 kHz <1 ≤ 20 kHz: ± - 20 Hz <1 ≤ 20 kHz: ± Agparent power Apparent power Power factor Waveform peak f. kHz; ⊕: Display value fo Add ± 0.00% rdg to th O'C to 20°C or 26°C to ±0.01% rdg, /*C (add 0.0 Cond active DC measured values) Under conditions of 60° Under conditions of 60° Add ± 0.0006 × humidity	tt 30 kHz < f = 100 kHz are r for voltage, active power alues of 1 such that 100 kHz oltage and active power at the status of 1 such that 100 kHz of 600 V, add the following 0.3° 0.5° 10° Accuracy Voltage accuracy + current at Apparent power accuracy + ($\sqrt{2.69 \times 10^{-5} t + 1.002 - \lambda^2}$ ϕ of other than ±90°: $\frac{1}{2} \cos(\phi + phase difference atVoltage/current FMS accuracy(ts. apply 300% of range)rvoltage/current fMS accuracy(ts. apply 300% of range)rvoltage/curere$	reference values. r, and phase difference in excess r, and phase difference values. or above 1000 V (however, figures a V, the effect will persist until the inp to the phase difference accuracy: $\frac{1}{r} - \sqrt{1-\lambda^2} \times 100\% \text{ fs.}$ e accuracy ±10 dgt. $\frac{r}{r} - \sqrt{1-\lambda^2} \times 100\% \text{ fs.} \pm 50 \text{ dgt.}$ ccuracy) × 100% fs. ±50 dgt. ccuracy) × 100% fs. ±50 dgt. ccuracy) × 100% fs. ±50 dgt. ccuracy) × 100% fs. ±60 dgt. ccuracy) × 100% fs. ±70 dgt. d values) ±0.02% rdg./°C (add 0.05% fs./°C for the couracy) = 10000 \text{ fs.}
and humidity	The accuracy figures (22000/f [kHz]) V for v: Add ±0.02% rdg, for v reference values). Even for input voltage resistance temperatur - For voltages in excess - SkHz <1 ≤ 20 kHz; - SHz <1 ≤ 5 kHz; - 20 kHz <1 ≤ 20 kHz; -	t 30 kHz < f = 100 kHz are r for voltage, active power alues of f such that 100 kHz oltage and active power at s that are less than 1000 N f = falls. of 600 V, add the following 0.3° 0.5° 10° 10° 10° 10° 10° 10° 10° 10° 10° 10	reference values. r, and phase difference in excess r, and phase difference values. or above 1000 V (however, figures a V, the effect will persist until the inp to the phase difference accuracy: $\frac{ccuracy \pm 10 \text{ dgl.}}{r_{-}\sqrt{1-\lambda^{2}} \times 100\% \text{ rdg.} \pm 50 \text{ dgl.}}$ $\frac{ccuracy}{r_{2}} \times 100\% \text{ rdg.} \pm 50 \text{ dgl.}$ $\frac{ccuracy}{r_{2}} \times 100\% \text{ f.s.} \pm 50 \text{ dgl.}$ $\frac{ccuracy}{r_{2}} \times 100\% \text{ f.s.} \pm 50 \text{ dgl.}$ $\frac{ccuracy}{r_{2}} \times 100\% \text{ f.s.} \pm 50 \text{ dgl.}$ $\frac{ccuracy}{r_{2}} \times 100\% \text{ f.s.} \pm 50 \text{ dgl.}$ $\frac{ccuracy}{r_{2}} \times 100\% \text{ f.s.} \pm 50 \text{ dgl.}$ $\frac{ccuracy}{r_{2}} \times 100\% \text{ f.s.} \pm 50 \text{ dgl.}$ $\frac{ccuracy}{r_{2}} \times 100\% \text{ f.s.} \pm 50 \text{ dgl.}$ $\frac{ccuracy}{r_{2}} \times 100\% \text{ f.s.} \pm 50 \text{ dgl.}$ $\frac{ccuracy}{r_{2}} \times 100\% \text{ f.s.} \pm 50 \text{ dgl.}$ $\frac{ccuracy}{r_{2}} \times 100\% \text{ f.s.} \pm 50 \text{ dgl.}$ $\frac{ccuracy}{r_{2}} \times 100\% \text{ f.s.} \pm 50 \text{ dgl.}$ $\frac{ccuracy}{r_{2}} \times 100\% \text{ f.s.} \pm 50 \text{ dgl.}$ $\frac{ccuracy}{r_{2}} \times 100\% \text{ f.s.} \pm 50 \text{ dgl.}$ $\frac{ccuracy}{r_{2}} \times 100\% \text{ f.s.} \pm 50 \text{ dgl.}$ $\frac{ccuracy}{r_{2}} \times 100\% \text{ f.s.} \pm 50 \text{ dgl.}$ $\frac{ccuracy}{r_{2}} \times 100\% \text{ f.s.} \pm 50 \text{ dgl.}$ $\frac{ccuracy}{r_{2}} \times 100\% \text{ f.s.} \pm 50 \text{ dgl.}$ $\frac{ccuracy}{r_{2}} \times 100\% \text{ f.s.} \pm 50 \text{ dgl.}$ $\frac{ccuracy}{r_{2}} \times 100\% \text{ f.s.} \pm 50 \text{ dgl.}$ $\frac{ccuracy}{r_{2}} \times 100\% \text{ f.s.} \pm 50 \text{ dgl.}$ $\frac{ccuracy}{r_{2}} \times 100\% \text{ f.s.} \pm 50 \text{ dgl.}$ $\frac{ccuracy}{r_{2}} \times 100\% \text{ f.s.} \pm 50 \text{ dgl.}$ $\frac{ccuracy}{r_{2}} \times 100\% \text{ f.s.} \pm 50 \text{ dgl.}$ $\frac{ccuracy}{r_{2}} \times 100\% \text{ f.s.} \pm 50 \text{ dgl.}$
	The accuracy figures (22000/f [kHz]) V for v: Add ±0.02% rdg, for v reference values). Even for input voltage resistance temperature For voltages in excess - 500 Hz <1 ≤ 5 kHz: ± - 5 kHz <1 ≤ 20 kHz: ± - 20 Hz <1 ≤ 5 kHz: ± - 20 Hz <1 ≤ 20 kHz: ± Reactive power Power factor Waveform peak f: kHz; ⊕: Display value fo Add the following to th Or' C to 20°C or 26°C to -0.1% rdg, 'FC (add 0.0 C and active p DC measured values) Under conditions of 609 Add ±0.0006 × humidity Add ±0.0006 × humidity So Hz/60 Hz Doking to C CMRR wh	t 30 kHz < f ± 100 kHz are r; for voltage, active power alues of 1 such that 100 kHz oltage and active power at is that are less than 1000 N f alls. of 600 V, add the following 0.3° Accuracy Voltage accuracy + current at Apparent power accuracy + ($\sqrt{2.69 \times 10^{-5} t + 1.002 - x^{2}}$ ϕ of other than ±90°: $\pm (1 - \frac{\cos(\phi + \text{phase difference}}{\cos(\phi)})$ ϕ of ±00° ther than ±90°: $\pm (5 - \frac{\cos(\phi + \text{phase difference}}{\cos(\phi)})$ ϕ of ±00° ther than ±90°: $\pm \cos(\phi + \text{phase difference}$ $\sqrt{3.005 of 100\% cl}$ of range) rvoltage/current PMS accuracy ($f \pm \text{ apply 300\% of range)}$ rvoltage/current phase difference at 10% ($f \pm 70$ f or DC measure tower when using Probe 2, 6 RH or greater: $(2\% RH) x (kHz)^{5} / sdg. to th(2\% RH x) kHz)^{2} / sdg. to thcostage the reference100 dB or greater (reference)80 dB or greater (reference)$	reference values. r, and phase difference in excess < 1 ± 1 MHz are reference values. or above 1000 V (however, figures a V, the effect will persist until the inp to the phase difference accuracy: $\frac{1}{r} - \sqrt{1 - \lambda^{2}} \times 100\% \text{ f.s.}$ e accuracy) × 100% rdg. ± 50 dgt. ccuracy) × 100% f.s. ±50 dgt. ccuracy) × 100% f.s. ±50 dgt. ccuracy) × 100% f.s. ±50 dgt. ccuracy) × 100% f.s. ± 50 dgt. ence; λ : Display value for power factor we power accuracy within the range d values) ±0.02% rdg./°C (add 0.05% f.s./°C 1 the voltage and active power accuracy ase difference. h applied between the voltage inp re) e value)
and humidity Effects of common-mode voltage	The accuracy figures (22000/f [kHz]) V for vi- (22000/f [kHz]) V for vi- (22000/f [kHz]) V for vi- reference values). Even for input voltage resistance temperature 500 Hz < 1 ≤ 5 kHz : ± 5 kHz < 1 ≤ 20 kHz : ± 5 kHz < 2 ≤ 20 kHz : ± 102 kHz < 1 ≤ 20 kHz : ± 102 kHz < 1 ≤ 20 kHz : ± 102 kHz < 1 ≤ 20 kHz : ± 102 kHz < 1 ≤ 20 kHz : ± 102 kHz < 1 ≤ 20 kHz : ± 102 kHz < 1 ≤ 20 kHz : ± 102 kHz < 1 ≤ 20 kHz : ± 102 kHz < 1 ≤ 20 kHz : ± 102 kHz < 1 ≤ 20 kHz : ± 102 kHz < 1 ≤ 20 kHz : ± 102 kHz < 1 ≤ 20 kHz : ± 102 kHz < 1 ≤ 20 kHz : ± 102 kHz < 1 ≤ 20 kHz : ± 102 kHz < 1 ≤ 20 kHz : ± 102 kHz < 1 ≤ 20 kHz : ± 102 kHz < 1 ≤ 20 kHz : ± 102 kHz < 1 ≤ 20 kHz : ± 102 kHz < 1 ≤ 20 kHz : ± 102 kHz < 1 ≤ 20 kHz : ± 102 kHz < 1 ≤ 20 kHz : ± 102 kHz	t 30 kHz < f = 100 kHz are r for voltage, active power alues of f such that 100 kHz oltage and active power at s that are less than 1000 N f = falls. of 600 V, add the following 0.3° 0.5° 1° Notage accuracy + current at Apparent power accuracy + Voltage accuracy + current at Apparent power accuracy + ($\sqrt{2.69 \times 10^{-5} t + 1.0022-t^{-2}}$) of of other than ±90°: $\frac{1}{1-6000000000000000000000000000000000000$	reference values. r, and phase difference in excess < 1 ± 1 MHz are reference values. or above 1000 V (however, figures a V, the effect will persist until the inp to the phase difference accuracy: $\frac{ccuracy \pm 10 \text{ dgt.}}{r_{-}\sqrt{1-\lambda^{2}} \times 100\% \text{ rdg.} \pm 50 \text{ dgt.}}$ $\frac{ccuracy}{r_{-}} \times 100\% \text{ rdg.} \pm 50 \text{ dgt.}$ $\frac{ccuracy}{r_{-}} \times 100\% \text{ f.s.} \pm 50 \text{ dgt.}$ $\frac{ccuracy}{r_{-}} \times 100\% \text{ f.s.} \pm 50 \text{ dgt.}$ $\frac{ccuracy}{r_{-}} \times 100\% \text{ f.s.} \pm 50 \text{ dgt.}$ $\frac{ccuracy}{r_{-}} \times 100\% \text{ f.s.} \pm 50 \text{ dgt.}$ $\frac{ccuracy}{r_{-}} \times 100\% \text{ f.s.} \pm 50 \text{ dgt.}$ $\frac{ccuracy}{r_{-}} \times 100\% \text{ f.s.} \pm 50 \text{ dgt.}$ $\frac{ccuracy}{r_{-}} \times 100\% \text{ f.s.} \pm 50 \text{ dgt.}$ $\frac{ccuracy}{r_{-}} \times 100\% \text{ f.s.} \pm 50 \text{ dgt.}$ $\frac{ccuracy}{r_{-}} \times 100\% \text{ f.s.} \pm 50 \text{ dgt.}$ $\frac{ccuracy}{r_{-}} \times 100\% \text{ f.s.} \pm 50 \text{ dgt.}$ $\frac{ccuracy}{r_{-}} \times 100\% \text{ f.s.} \pm 50 \text{ dgt.}$ $\frac{ccuracy}{r_{-}} \times 100\% \text{ f.s.} \pm 50 \text{ dgt.}$ $\frac{ccuracy}{r_{-}} \times 100\% \text{ f.s.} \pm 50 \text{ dgt.}$ $\frac{ccuracy}{r_{-}} \times 100\% \text{ f.s.} \pm 50 \text{ dgt.}$ $\frac{ccuracy}{r_{-}} \times 100\% \text{ f.s.} \pm 50 \text{ dgt.}$ $\frac{ccuracy}{r_{-}} \times 100\% \text{ f.s.} \pm 50 \text{ dgt.}$ $\frac{ccuracy}{r_{-}} \times 100\% \text{ f.s.} \pm 50 \text{ dgt.}$ $\frac{ccuracy}{r_{-}} \times 100\% \text{ f.s.} \pm 50 \text{ dgt.}$ $\frac{ccuracy}{r_{-}} \times 100\% \text{ f.s.} + 50 \text{ dgt.}$ $\frac{ccuracy}{r_{-}} \times 100\% \text{ f.s.} + 50 \text{ dgt.}$ $\frac{ccuracy}{r_{-}} \times 100\% \text{ f.s.} + 50 \text{ dgt.}$ $\frac{ccuracy}{r_{-}} \times 100\% \text{ f.s.} + 50 \text{ dgt.}$ $\frac{ccuracy}{r_{-}} \times 100\% \text{ f.s.} + 50 \text{ dgt.}$ $\frac{ccuracy}{r_{-}} \times 100\% \text{ f.s.} + 50 \text{ dgt.}$ $\frac{ccuracy}{r_{-}} \times 10\% \text{ f.s.} + 50 \text{ dgt.}$ $\frac{ccuracy}{r_{-}} \times 10\% \text{ f.s.} + 50 \text{ dgt.}$ $\frac{ccuracy}{r_{-}} \times 10\% \text{ f.s.} + 50 \text{ dgt.}$ $\frac{ccuracy}{r_{-}} \times 10\% \text{ f.s.} + 50 \text{ dgt.}$ $\frac{ccuracy}{r_{-}} \times 10\% \text{ f.s.} + 50 \text{ dgt.}$
and humidity Effects of common-mode voltage Effects of external magnetic fields	The accuracy figures (22000/f [kHz]) V for vi- (22000/f [kHz]) V for vi- (22000/f [kHz]) V for vi- reference values). Even for input voltage resistance temperature 500 Hz < 1 ≤ 5 kHz : ± 5 kHz < 1 ≤ 20 kHz : ± 5 kHz < 2 ≤ 20 kHz : ± 102 kHz < 1 ≤ 20 kHz : ± 102 kHz < 1 ≤ 20 kHz : ± 102 kHz < 1 ≤ 20 kHz : ± 102 kHz < 1 ≤ 20 kHz : ± 102 kHz < 1 ≤ 20 kHz : ± 102 kHz < 1 ≤ 20 kHz : ± 102 kHz < 1 ≤ 20 kHz : ± 102 kHz < 1 ≤ 20 kHz : ± 102 kHz < 1 ≤ 20 kHz : ± 102 kHz < 1 ≤ 20 kHz : ± 102 kHz < 1 ≤ 20 kHz : ± 102 kHz < 1 ≤ 20 kHz : ± 102 kHz < 1 ≤ 20 kHz : ± 102 kHz < 1 ≤ 20 kHz : ± 102 kHz < 1 ≤ 20 kHz : ± 102 kHz < 1 ≤ 20 kHz : ± 102 kHz < 1 ≤ 20 kHz : ± 102 kHz < 1 ≤ 20 kHz : ± 102 kHz < 1 ≤ 20 kHz : ± 102 kHz < 1 ≤ 20 kHz : ± 102 kHz	t 30 kHz < f ± 100 kHz are r; for voltage, active power alues of 1 such that 100 kHz oltage and active power at is that are less than 1000 N f alls. of 600 V, add the following 0.3° Accuracy Voltage accuracy + current at Apparent power accuracy + ($\sqrt{2.69 \times 10^{-5} t + 1.002 - x^{2}}$ ϕ of other than ±90°: $\pm (1 - \frac{\cos(\phi + \text{phase difference}}{\cos(\phi)})$ ϕ of ±00° ther than ±90°: $\pm (5 - \frac{\cos(\phi + \text{phase difference}}{\cos(\phi)})$ ϕ of ±00° ther than ±90°: $\pm \cos(\phi + \text{phase difference}$ $\sqrt{3.005 of 100\% cl}$ of range) rvoltage/current PMS accuracy ($f \pm \text{ apply 300\% of range)}$ rvoltage/current phase difference at 10% ($f \pm 70$ f or DC measure tower when using Probe 2, 6 RH or greater: $(2\% RH) x (kHz)^{5} / sdg. to th(2\% RH x) kHz)^{2} / sdg. to thcostage the reference100 dB or greater (reference)80 dB or greater (reference)$	reference values. r, and phase difference in excess < [1 1 MHz are reference values. or above 1000 V (however, figures a v, the effect will persist until the inp to the phase difference accuracy: $\frac{1}{r_{-}\sqrt{1-\lambda^{2}}} \times 100\% rdg. \pm 50 dgt.$ $\frac{1}{r_{-}\sqrt{1-\lambda^{2}}} \times 100\% rdg. \pm 50 dgt.$ $\frac{1}{r_{-}\sqrt{1-\lambda^{2}}} \times 100\% rds. \pm 50 dgt.$ $r_{-}\sqrt{1+\lambda} = 100\% rds.$ $r_{-}\sqrt{1+\lambda} = 10\% rds.$ $r_{-}1+\lambda$
and humidity Effects of common-mode voltage Effects of external	The accuracy figures (22000/f [kHz]) V for vi- (22000/f [kHz]) V for vi- (22000/f [kHz]) V for vi- reference values). Even for input voltage resistance temperature 500 Hz < 1 ≤ 5 kHz : ± 5 kHz < 1 ≤ 20 kHz : ± 5 kHz < 2 ≤ 20 kHz : ± 102 kHz < 1 ≤ 20 kHz : ± 102 kHz < 1 ≤ 20 kHz : ± 102 kHz < 1 ≤ 20 kHz : ± 102 kHz < 1 ≤ 20 kHz : ± 102 kHz < 1 ≤ 20 kHz : ± 102 kHz < 1 ≤ 20 kHz : ± 102 kHz < 1 ≤ 20 kHz : ± 102 kHz < 1 ≤ 20 kHz : ± 102 kHz < 1 ≤ 20 kHz : ± 102 kHz < 1 ≤ 20 kHz : ± 102 kHz < 1 ≤ 20 kHz : ± 102 kHz < 1 ≤ 20 kHz : ± 102 kHz < 1 ≤ 20 kHz : ± 102 kHz < 1 ≤ 20 kHz : ± 102 kHz < 1 ≤ 20 kHz : ± 102 kHz < 1 ≤ 20 kHz : ± 102 kHz < 1 ≤ 20 kHz : ± 102 kHz < 1 ≤ 20 kHz : ± 102 kHz < 1 ≤ 20 kHz : ± 102 kHz < 1 ≤ 20 kHz : ± 102 kHz	t 30 kHz < f = 100 kHz are r for voltage, active power alues of f such that 100 kHz oltage and active power at s that are less than 1000 N f = falls. of 600 V, add the following 0.3° 0.5° 1° Notage accuracy + current at Apparent power accuracy + Voltage accuracy + current at Apparent power accuracy + ($\sqrt{2.69 \times 10^{-5} t + 1.0022-t^{-2}}$) of of other than ±90°: $\frac{1}{1-6000000000000000000000000000000000000$	reference values. r, and phase difference in excess < 1 ± 1 MHz are reference values. or above 1000 V (however, figures a V, the effect will persist until the inp to the phase difference accuracy: $\frac{1}{r} - \sqrt{1-\lambda^2} \times 100\% \text{ f.s.}$ e accuracy ±10 dgt. $\frac{r}{r} - \sqrt{1-\lambda^2} \times 100\% \text{ f.s.} \pm 50 \text{ dgt.}$ ccuracy) $\times 100\% \text{ f.s.} \pm 50 \text{ dgt.}$ $\frac{r}{r} \times 100\% \text{ f.s.} \pm 50 \text{ dgt.}$ ence; λ : Display value for power factor we power accuracy within the range d values) $\pm 0.02\% \text{ rdg.}^{*}\text{ C}$ (add 0.05% f.s./*C 1 he voltage and active power accuracy ase difference. h applied between the voltage inp re) to value) Itage is applied for all measureme or 50 Hz/60 Hz)

Frequency measurement Number of measurement channels (f1 to f6), base

-

1.....

. . . faile

-1011

Number of measurement	Max. 6 channels (f1 to f6), based on the number of input channels

channels	
Measurement source	Select from U/I for each connection.
Measurement method	Reciprocal method + zero-cross sampling value correction Calculated from the zero-cross point of waveforms after application of the zero-cross filter.
Measurement range	0.1 Hz to 2 MHz (Display shows 0.00000 Hz or Hz if measurement is not possible.)
Accuracy	$\pm 0.05\%$ rdg. ± 1 dgt. (with a sine wave that is at least 30% of the measurement source's measurement range)
Display format	0.10000 Hz to 9.99999 Hz, 9.9000 Hz to 99.9999 Hz, 99.000 Hz to 99.999 Hz, 0.99000 KHz to 9.99999 KHz, 9.9000 Hz to 99.999 Hz, 9.9000 Hz to 999.999 kHz, 0.99000 MHz to 2.00000 MHz

Integration measurement

Measurement modes		S or DC for each connection (DC mode can only be selected when using an		
		sor with a 1P2W connection).		
Measurement parameters				
	Ih+ and Ih- are measured only in DC mode. Only Ih is measured in RMS mode.			
Measurement method	Digital calculation based on current and active power values			
	DC mode	Every sampling interval, current values and instantaneous power values are integrated separately for each polarity.		
	RMS mode	The current RMS value and active power value are integrated for each measurement interval. Only active power is integrated separately for each polarity.		
Display resolution	999999 (6 digits + decimal point), starting from the resolution at which 1% of each range is f.s.			
Measurement range	0 to ±99999.9	0 to ±9999.99 TAh/TWh		
Integration time	10 sec. to 9	999 hr. 59 min. 59 sec.		
Integration time accuracy	±0.02% rdg	±0.02% rdg. (0°C to 40°C)		
Integration accuracy	±(current or	active power accuracy) ±integration time accuracy		
Backup function	None			

Harmonics measurement

Number of measurement channels	Max. 6 channels, based on the number of built-in channels	
Synchronization source	Based on the synchronization source setting for each connection.	
Measurement modes	Select from IEC standard mode or wideband mode (setting applies to all channels).	
Measurement parameters	Harmonic voltage RMS value, harmonic voltage content percentage, harmonic voltage phase angle, harmonic current RMS value, harmonic current content percentage, harmonic current phase angle, harmonic active power, harmonic power content percentage, harmonic voltage/current phase difference, total harmonic voltage distortion, total harmonic current distortion, voltage unbalance rate, current unbalance rate (no intermediate harmonic parameters in IEC standard mode) 32 bits	
length		
Antialiasing	Digital filter (automatically configured based on synchronization frequency)	
Window function	Rectangular	
Grouping	OFF / Type 1 (harmonic sub-group) / Type 2 (harmonic group)	
THD calculation method	THD_F / THD_R (Setting applies to all connections.) Select calculation order from 2nd order to 100th order (however, limited to the maximum analysis order for each mode).	

(1) IEC standard mode

Mea	surement method	Zero-cross synchronization cal source)	culation method (same wind	ow for each synchronization
		Fixed sampling interpolation cal		thinning in window
		IEC 61000-4-7:2002 compliant v	vith gap overlap	
Sync	chronization	45 Hz to 66 Hz		
frequ	lency range			
Data	update rate	Fixed at 200 ms.		
Anal	ysis orders	0th to 50th		
Wind	dow wave number	When less than 56 Hz, 10 waves	s; when 56 Hz or greater, 12 w	aves
Num	ber of FFT points	4096 points		
Accu	iracy			
	Frequency	Harmonic voltage	Harmonic power	Phase difference

	and current		
DC (0th order)	±0.1% rdg. ±0.1% f.s.	±0.1% rdg. ±0.2% f.s.	
45 Hz ≤ f ≤ 66 Hz	±0.2% rdg. ±0.04% f.s.	±0.4% rdg. ±0.05% f.s.	±0.08°
66 Hz < f ≤ 440 Hz	±0.5% rdg. ±0.05% f.s.	±1.0% rdg. ±0.05% f.s.	±0.08°
440 Hz < f ≤ 1 kHz	±0.8% rdg. ±0.05% f.s.	±1.5% rdg. ±0.05% f.s.	±0.4°
1 kHz < f ≤ 2.5 kHz	±2.4% rdg. ±0.05% f.s.	±4% rdg. ±0.05% f.s.	±0.4°
2.5 kHz < f ≤ 3.3 kHz	±6% rdg. ±0.05% f.s.	±10% rdg. ±0.05% f.s.	±0.8°
	Power is defined for a power fac Accuracy specifications are de		input that is greater than or

Accuracy specifications are defined for fundamental wave input that is greater than or equal to 50% of the range. Add the current sensor accuracy to the above accuracy figures for current, active power, and phase difference. Add $\pm 0.02\%$ rdg. for voltage and active power at or above 1000 V (however, figures are reference values). Even for input voltages that are less than 1000 V, the effect will persist until the input resistance temperature falls.

(2) Wideband mode

Measurement method	Zero-cross synchronization calculation method (same window for each synchron source) with gaps		
	Fixed sampling interpolation calculation m	ethod	
Synchronization frequency range	0.1 Hz to 300 kHz		
Data update rate	Fixed at 50 ms.		
Maximum analysis order and	Frequency	Window wave number	Maximum analysis order
Window wave number	0.1 Hz ≤ f < 80 Hz	1	100th
	80 Hz ≤ f < 160 Hz	2	100th
	160 Hz ≤ f < 320 Hz	4	60th
	320 Hz ≤ f < 640 Hz	2	60th
	640 Hz ≤ f < 6 kHz	4	50th
	6 kHz ≤ f < 12 kHz	2	50th
	12 kHz ≤ f < 25 kHz	4	50th
	25 kHz ≤ f < 50 kHz	8	30th
	50 kHz ≤ f < 101 kHz	16	15th
	101 kHz ≤ f < 201 kHz	32	7th
	201 kHz ≤ f < 300 kHz	64	5th

The instrument provides phase zero-adjustment functionality using keys or communications commands (only available when the synchronization source is set to Ext). Add the following to the accuracy figures for voltage (U), current (I), active power (P), and phase difference. (Unit for f in following table: kHz) Phase zero-adjustment Accuracy

Lu Disease diff

Frequency		Harmonic voltage and current	Harmonic power	Phase difference
DC		±0.1% f.s.	±0.2% f.s.	-
0.1 Hz ≤ f < 30	0 Hz	±0.05% f.s.	±0.05% f.s.	±0.1°
30 Hz ≤ f < 45	5 Hz	±0.1% f.s.	±0.2% f.s.	±0.1°
45 Hz ≤ f ≤ 66	6 Hz	±0.05% f.s.	±0.1% f.s.	±0.1°
66 Hz < f ≤ 1 I	kHz	±0.05% f.s.	±0.1% f.s.	±0.1°
1 kHz < f ≤ 10 kHz		±0.05% f.s.	±0.1% f.s.	±0.6°
10 kHz < f ≤ 50 kHz		±0.2% f.s.	±0.4% f.s.	±(0.020×f)° ±0.5°
$50 \text{ kHz} < f \le 100$	0 kHz	±0.4% f.s.	±0.5% f.s.	±(0.020×f)° ±1°
100 kHz < f ≤ 50	0 kHz	±1% f.s.	±2% f.s.	±(0.030×f)° ±1.5°
500 kHz < f ≤ 900	0 kHz	±4% f.s.	±5% f.s.	±(0.030×f)° ±2°
The figures for voltage, current, power, and phase difference for frequencies in excess or 300 kHz are reference values. When the fundamental wave is outside the range of 16 Hz to 850 Hz, the figures for voltage, current, power, and phase difference for frequencies other than the fundament wave are reference values.				

wave are reference values. When the fundamental wave is within the range of 16 Hz to 850 Hz, the figures for voltage, current, power, and phase difference are in excess of 6 Hz are reference values. Accuracy values for phase difference are defined for input for which the voltage and current for the same order are at least 10% f.s.

Waveform recording

Number of measurement channels	Voltage and current waveforms	Max. 6 channels (based on the number of installed channels)
	Motor waveforms *	Max. 2 analog DC channels + max. 4 pulse channels
Recording capacity	1 Mword × ((voltage + cu	irrent) × number of channels + motor waveforms *)
Waveform resolution	16 bits (Voltage and curr	ent waveforms use the upper 16 bits of the 18-bit A/D.)
Sampling speed	Voltage and current waveforms	Always 5 MS/s
	Motor waveforms * Motor pulse *	Always 50 kS/s Always 5 MS/s
Compression ratio	1/1, 1/2, 1/5, 1/10, 1/20, 1/50, 1/100, 1/200, 1/500	
	(5 MS/s, 2.5 MS/s, 1 MS/s, 500 kS/s, 250 kS/s, 100 kS/s, 50 kS/s, 25 kS/s, 10 kS/s)	
	However, motor waveforms* are only compressed at 50 kS/s or less.	
Recording length	1 kWord / 5 kWord / 10 kWord / 50 kWord / 100 kWord / 500 kWord / 1 Mword	
Storage mode	Peak-to-peak compression or simple thinning	

Trigger mode	SINGLE or NORMAL (with forcible trigger setting)	
Pre-trigger	0% to 100% of the recording length, in 10% steps	
Trigger source	Voltage and current waveform, waveform after voltage and current zero-cross filter, manual, motor waveform*, motor pulse*	
Trigger slope	Rising edge, falling edge	
Trigger level	±300% of the range for the waveform, in 0.1% steps	
	*Motor waveform and motor pulse: Motor analysis and D/A-equipped models only	

Motor analysis (PW6001-11 to -16 only)

Number of input channels	4 channels	
	CH A Analog DC input / Frequency input / Pulse input	
	CH B Analog DC input / Frequency input / Pulse input	
	CH C Pulse input	
	CH D Pulse input	
Operating mode	Single, dual, or independent input	
Input terminal profile	Isolated BNC connectors	
Input resistance (DC)	1 MΩ ±50 kΩ	
Input method	Function-isolated input and single-end input	
Measurement parameters	Voltage, torque, rpm, frequency, slip, motor power	
Maximum input voltage	±20 V (analog DC and pulse operation)	
Additional conditions for quaranteed accuracy	Input: Terminal-to-ground voltage of 0 V, after zero-adjustment	

(1) Analog DC input (CH A/CH B)

Measurement range	±1 V / ±5 V / ±10 V
Effective input range	1% to 110% f.s.
Sampling	50 kHz, 16 bits
Response speed	0.2 ms (when LPF is OFF)
Measurement method	Simultaneous digital sampling, zero-cross synchronization calculation method (averaging between zero-crosses)
Measurement accuracy	±0.05% rdg. ±0.05% f.s.
Temperature coefficient	±0.03% f.s./°C
Effects of common- mode voltage	$\pm 0.01\%$ f.s. or less with 50 V applied between the input terminals and the enclosure (DC / 50 Hz / 60 Hz)
LPF	OFF (20 kHz) / ON (1 kHz)
Display range	From the range's zero-suppression range setting to ±150%
Zero-adjustment	Voltage ±10% f.s., zero-correction of input offsets that are less

(2) Frequency input (CH A/CH B)

Detection level	Low: 0.5 V or less; high: 2.0 V or more
Measurement frequency band	0.1 Hz to 1 MHz (at 50% duty ratio)
Minimum detection width	0.5 µs or more
Measurement accuracy	±0.05% rdg. ±3 dgt.
Display range	1.000 kHz to 500.000 kHz

(3) Pulse input (CH A / CH B / CH C / CH D)

Detection level	Low: 0.5 V or less; high: 2.0 V or more
Measurement frequency band	0.1 Hz to 1 MHz (at 50% duty ratio)
Minimum detection width	0.5 µs or more
Pulse filter	OFF / Weak / Strong (When using the weak setting, positive and negative pulses of less than 0.5 μ s are ignored. When using the strong setting, positive and negative pulses of 5 μ s are ignored.)
Measurement accuracy	±0.05% rdg. ±3 dgt.
Display range	0.1 Hz to 800.000 kHz
Unit	Hz / r/min.
Frequency division setting range	1~60000
Rotation direction detection	Can be set in single mode (detected based on lead/lag of CH B and CH C).
Mechanical angle origin detection	Can be set in single mode (CH B frequency division cleared at CH D rising edge).

autout.

Number of output channels	20 channels		
Output terminal profile	D-sub 25-pin connec	tor × 1	
Output details	 Switchable between waveform output and analog output (select from basic measurement parameters). Waveform output is fixed to CH1 to CH12. 		
D/A conversion resolution	16 bits (polarity + 15 bits)		
Output refresh rate	Analog output Waveform output	10 ms / 50 ms / 200 ms (based on data update rate for the selected parameter) 1 MHz	
Output voltage	Analog output Waveform output	±5 V DC f.s. (max. approx. ±12 V DC) Switchable between ±2 V f.s. and ±1 V f.s., crest factor of 2.5 or greater Setting applies to all channels.	
Output resistance	100 Ω ±5 Ω		
Output accuracy	Analog output	Output measurement parameter measurement accuracy ±0.2% f.s. (DC level)	
	Waveform output	Measurement accuracy ±0.5% f.s. (at ±2 V f.s.) or ±1.0% f.s. (at ±1 V f.s.) (RMS value level, up to 50 kHz)	
Temperature coefficient	±0.05% f.s./°C		

Display section

1 5					
Display characters	English / Japanese / Chinese (simplified, available soon)				
Display	9" WVGA TFT color LCD (800 × 480 dots) with an LED backlight and analog resistive touch panel				
Display value resolution	999999 count (including integration values)				
Display refresh rate	Measured values	Approx. 200 ms (independent of internal data update rate) When using simple averaging, the data update rate varies based on the number of averaging iterations.			
	Waveforms	Based on display settings			

External interface

Connector	USB Type A connector × 1
Electrical specifications	USB 2.0 (high-speed)
Power supplied	Max. 500 mA
Supported USB flash drives	USB Mass Storage Class compatible
Recorded data	Save/load settings files Save measured values/automatic recorded data (CSV format) Copy measured values/recorded data (from internal memory) Save waveform data, save screenshots (compressed BMP format)

()	
Connector	RJ-45 connector × 1
Electrical specifications	IEEE 802.3 compliant
Transmission method	10Base-T / 100Base-TX / 1000Base-T (automatic detection)
Protocol	TCP/IP (with DHCP function)
Functions	dedicated port (data transfers, command control)

(3) GP-IB interface

Communication method	IEEE 488.1 1987 compliant developed with reference to IEEE 488.2 1987 Interface functions: SH1, AH1, T6, L4, SR1, RL1, PP0, DC1, DT1, C0
Addresses	00 to 30
Functions	Command control

(4) RS-232C interface

Connector	D-sub 9-pin connector x 1, 9-pin power supply compatible, also used for external control
Communication method	RS-232C, EIA RS-232D, CCITT V.24, and JIS X5101 compliant Full duplex, start stop synchronization, data length of 8, no parity, 1 stop bit
Flow control	Hardware flow control ON/OFF
Communications speed	9,600 bps / 19,200 bps / 38,400 bps / 57,600 bps / 115,200 bps / 230,400 bps
Functions	Command control Used through exclusive switching with external control interface

(5) External control interface

()	
Connector	D-sub 9-pin connector × 1, 9-pin power supply compatible, also used for RS-232C
Power supplied	OFF/ON (voltage of +5 V, max. 200 mA)
Electrical specifications	0/5 V (2.5 V to 5 V) logic signals or contact signal with terminal shorted or open
Functions	Same operation as the [START/STOP] key or the [DATA RESET] key on the control panel Used through exclusive switching with RS-232C

(6) Two-instrument synchronization interface

()	•				
Connector	SFP optical transceiver, Duplex-LC (2-wire LC)				
Optical signal	850 nm VCSEL, 1 Gbps				
Laser class	Class 1				
Fiber used	50/125 µm multi-mode fiber equivalent, up to 500 m				
Functions	Sends data from the connected slave instrument to the master instrument, which performs calculations and displays the results.				

Functional Specifications

Auto-range function

Functions	The voltage and current ranges for each connection are automatically changed in response to the input.				
Operating mode	OFF/ON (selectable for each connection)				
Auto-range breadth	Broad/narrow (applies to all channels)				
	Broad The range is increased by one if the peak value is exceeded for the connection or if there is an RMS value that is greater than or equal to 110% f.s. The range is lowered by two if all RMS values for the connection are less than or equal to 10% f.s. (However, the range is not lowered if the peak value would be exceeded with the lower range.)				
	Narrow The range is increased by one if the peak value is exceeded for the connection or if there is an RMS value that is greater than or equal to 105% f.s. The range is lowered by one if all RMS values for the connection are less than or equal to 40% f.s. (However, the range is not lowered if the peak value would be exceeded with the lower range). When Δ -Y conversion is enabled, the range reduction is determined by multiplying the range by $\frac{1}{\sqrt{2}}$.				

Time control function

Timer control	OFF, 10 sec. to 9999 hr. 59 min. 59 sec. (in 1 sec. steps)				
Actual time control	OFF, start time/stop time (in 1 min. steps)				
Intervals	OFF / 10 ms / 50 ms / 200 ms / 500 ms / 1 sec. / 5 sec. / 10 sec. / 15 sec. / 30 sec. 1 min. / 5 min. / 10 min. / 15 min. / 30 min. / 60 min.				

Hold functionality

	5
Hold	Stops updating the display with all measured values and holds the value currently being displayed.
	Used exclusively with the peak hold function.
Peak hold	Updates the measured value display each time a new maximum value is set. Used exclusively with the hold function.

Calculation functionality

(1) Rectifier

.,	
Functions	Selects the voltage and current values used to calculate apparent and reactive power and power factor.
Operating mode	RMS/mean (Can be selected for each connection's voltage and current.)
(2) Scaling	
VT (PT) ratio	OFF/ 0.01 to 9999.99
CT ratio	OFF/0.01 to 9999.99

(3) Averaging (AVG)

Functions	All instantaneous measured values, including harmonics, are averaged.						
Operating mode	OFF / Simple averaging / Exponential averaging						
Operation	Simple Averaging is performed for the number of simple averaging iterations averaging for each data update cycle, and the output data is updated. The data update rate is lengthened by the number of averaging iterations.						
	Exponential Data is exponentially averaged using a time constant defined by the averaging data update rate and the exponential averaging response rate.						
	During averaging operation, averaged data is used for all analog output and save data.						
Number of simple averaging iterations	Number of averaging iterations		5	10	20	50	100
	Data update rate	10 ms	50 ms	100 ms	200 ms	500 ms	1 sec.
		50 ms	250 ms	500 ms	1 sec.	2.5 sec	. 5 sec.
		200 ms	1 sec.	2 sec.	4 sec.	10 sec.	20 sec.
Exponential averaging response rate			FAST	N	1ID	SLOW	
	Data update rate		10 ms	0.1 sec.	0.8	sec.	5 sec.
			50 ms	0.5 sec.	4 9	sec.	25 sec.
			200 ms	2.0 sec.	16	sec.	100 sec.
	These values indic the input changes			the final sta	bilized value	e to convei	rge on ±1% when

(4) Efficiency and loss calculations

Calculated items	Active power value (P), fundamental wave active power (Pfnd), and motor power (F (Motor analysis and D/A-equipped models only) for each channel and connection	
Number of calculations that can be performed	Four each for efficiency and loss	
Formula	$ \begin{array}{l} \mbox{Calculated items are specified for Pin(n) and Pout(n) in the following format:} \\ \mbox{Pin = Pin1 + Pin2 + Pin3 + Pin4, Pout = Pout1 + Pout2 + Pout3 + Pout4} \\ \mbox{IPout1} \\ \mbox{IPin1} \\ \mbox{Loss = IPinI-IPout1} \\ \end{array} $	
5) Power formula		
5) Power formula Functions		
	selection	

(6) Delta conversion

Functions	Δ-Υ	When using a 3P3W3M or 3V3A connection, converts the line voltage
	Y-Δ	waveform to a phase voltage waveform using a virtual neutral point. When using a 3P4W connection, converts the phase voltage waveform to a line voltage waveform.
		MS values and all voltage parameters, including harmonics, are calculated ost-conversion voltage.
	using the p	ost-conversion voltage.

(7) Current sensor phase shift calculation

Functions	Corrects the current se	nsor's harmonic phase characteristics using calculations.
Correction value settings	Correction points are set using the frequency and phase difference.	
		0.1 kHz to 999.9 kHz (in 0.1 kHz steps) 0.0 deg. to ±90.0 deg. (in 0.1 deg. steps)
	However, the time diffe to a maximum value of	prence calculated from the frequency's phase difference is subject 50 $\mu s.$

Display functionality

Functions Displays a connection diagram and voltage and current vectors based on the selected measurement lines. The ranges for a correct connection are displayed on the vector display so that the connection can be checked. Mode at startup User can select to display the connection confirmation screen at startup (startup screen setting)

	setting).
Simple settings	Commercial power supply / Commercial power supply high-resolution HD / DC / DC high- resolution HD / PWM / High-frequency / Other

(2) Vector display screen

Functions	Displays a connection-specific vector graph along with associated level values and phase
	angles.

(3) Numerical display screen

Functions	Displays power channels.	er measured values and motor measured values for up to six instrument
Display patterns	Basic by connection Selection display	Displays measured values for the measurement lines and motors combined in the connection. There are four measurement line patterms: U, I, P, and Integ. Creates a numerical display for the measurement parameters that the user has selected from all basic measurement parameters in the location selected by the user. There are 4-, 8-, 16-, and 32-display patterns.

(4) Harmonic display screen

., .	•
Functions	Displays harmonic measured values on the instrument's screen.
Display patterns	Display bar graph: Displays harmonic measurement parameters for user-specified channels as a bar graph. Display list: Displays numerical values for user-specified parameters and user-specified channels.

(5) Waveform display screen

Functions	Displays the voltage and current waveforms and motor waveform.
Display patterns	All-waveform display, waveform + numerical display

Automatic save function

Functions	Saves the specified measured values in effect for each interval.	
Save destination	OFF / Internal memory / USB flash drive	
Saved parameters	User-selected from all measured values, including harmonic measured values	
Maximum amount of saved data	Internal memory 64 MB (data for approx. 1800 measurements) USB flash drive Approx. 100 MB per file (automatically segmented) × 20 files	
Data format	CSV file format	

Manual save function (1) Measurement data

Functions	The [SAVE] key saves specified measured values at the time it is pressed. Comment text can be entered for each saved data point, up to a maximum of 20 alphanumeric characters. *The manual save function for measurement data cannot be used while automatic save is in progress.
Save destination	USB flash drive
Saved parameters	User-selected from all measured values, including harmonic measured values
Data format	CSV file format

(2) Waveform data

()	
Functions	A button on the touch screen saves waveform data at the time it is pressed. Comment text can be entered for each saved data point, up to a maximum of 40 alphanumeric characters. "The manual save function for measurement data cannot be used while automatic saving is in progress.
Save destination	USB flash drive
Data format	CSV file format

(3) Screenshots

(3) Screenshots	
Functions	The [COPY] key saves a screenshot to the save destination. "This function can be used at an interval of 1 sec or more while automatic saving is in progress.
Save destination	USB flash drive
Comment entry Data format	OFF / Text / Handwritten When set to [Text], up to 40 alphanumeric characters When set to [Handwritten], hand-drawn images are pasted to the screen. Compressed BMP
(4) Settings data	
Functions	Saves settings information to the save destination as a settings file via functionality provided on the File screen. In addition, previously saved settings files can be loaded and their settings restored on the File screen. However, language and communications settings are not saved.

USB flash drive Save destination

Two-instrument synchronization function

Functions	Sends data from the connected slave instrument to the master instrument, which performs calculations and displays the results. In numerical synchronization mode, the master instrument operates as a power meter with up to 12 channels. In waveform synchronization mode, the master instrument operates while synchronizing up to three channels from the slave instrument at the waveform level.		
Operating mode	OFF / Numerical synchronization / Waveform synchronization Numerical synchronization cannot be selected when the data update rate is 10 ms. For both master instruments and slave instruments, waveform synchronization operates only when there are 3 or more channels.		
Synchronized items	Numerical synchronization mode Waveform synchronization mode	Data update timing, start/stop/data reset Voltage/current sampling timing	
Synchronization delay	Numerical synchronization mode Waveform synchronization mode	Max. 20 µs Up to 5 samples	
Transfer items	Numerical synchronization mode	Basic measurement parameters for up to six channels (including motor data)	
	Waveform synchronization mode	Voltage/current sampling waveforms for up to three channels (not including motor data). However, the maximum number of channels is limited to a total of six, including the master instrument's channels.	

Other functions

Clock function	Auto-calendar, automatic leap year detection, 24-hour clock	
Actual time accuracy	When the instrument is on, ± 100 ppm; when the instrument is off, within ± 3 sec./day (25°C)	
Sensor identification	Current sensors connected to Probe1 are automatically detected.	
Zero-adjustment function	After the AC/DC current sensor's DEMAG signal is sent, zero-correction of the voltage and current input offsets is performed.	
Touch screen correction	Position calibration is performed for the touch screen.	
Key lock	While the key lock is engaged, the key lock icon is displayed on the screen.	

General Specifications

Operating environment	Indoors at an elevation of up to 2000 m in a Pollution Level 2 environment		
Storage temperature and humidity	-10°C to 50°C, 80% RH or less (no condensation)		
Operating temperature and humidity	0°C to 40°C, 80% RH or less (no condensation)		
Dielectric strength	50 Hz/60 Hz 5.4 K/ms AC for 1 min. (sensed current of 1 mA) Between voltage input terminals and instrument enclosure, and between current sensor input terminals and interfaces 1 k/rms AC for 1 min. (sensed current of 3 mA) Between motor input terminals (Ch. A, Ch. B, Ch. C, and Ch. D) and the instrument enclosure		
Standards	Safety EN61010 EMC EN61326 Class A, EN61000-3-2, EN61000-3-3		
Rated supply voltage	100 V AC to 240 V AC, 50 Hz/ 60 Hz		
Maximum rated power	200 VA		
External dimensions	Approx. 430 (W) × 177 (H) × 450 (D) mm (excluding protruding parts)		
Mass	Approx. 14 kg ±0.5 kg (PW6001-16)		
Backup battery life	Approx. 10 years (reference value at 23°C) (lithium battery that stores time and setting conditions)		
Product warranty period	1 year		
Guaranteed accuracy period	6 months (1-year accuracy = 6-month accuracy × 1.5)		
Post-adjustment accuracy guaranteed period	6 months		
Accuracy guarantee conditions	Accuracy guarantee temperature and humidity range: 23°C ±3°C, 80% RH or less Warm-up time: 30 min. or more		
Accessories	Instruction manual x 1, power cord x 1, D-sub 25-pin connector x 1 (PW6001-1x only)		

Formulae

Basic formula

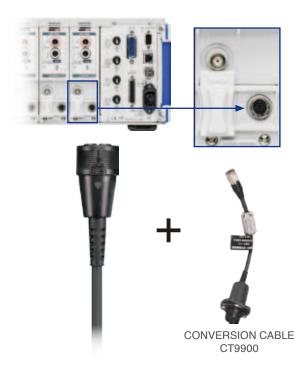
Basic f	ormula						
Wiring Parameter	1P2W	1P3W	3P3W2M	3V3A	3P3W3M	3P4W	
Voltage, current RMS value	Xrms(i)=	$X_{rms(i)(i+1)} = X_{rms123} = \frac{1}{3} \left(X_{rms1} + X_{rms2} + X_{rms3} \right)$				-Xrms3)	
RMS value (actual RMS value)	$\sqrt{\frac{1}{M}} \sum_{s=0}^{4} (X(l)s)^2 \qquad \frac{1}{2} \left(Xrms(l) + Xrms(l+1) \right) \qquad Xrms456 = \frac{1}{3} \left(Xrms4 + Xrms5 + Xrms6 \right)$						
Voltage, current Mean value	Xmn(i) =	Xmn(i))(i+1) =	$X_{mn123} = \frac{1}{3}(X$	mn1+ Xmn2+	Xmn3)	
rectification RMS equivalent	$\frac{\mathcal{T}}{2\sqrt{2}}\frac{1}{M}\sum_{s=0}^{M-1}\left X(i)s\right $	1/2 (Xmn(i)	+Xmn(i+1))	$X_{mn456} = \frac{1}{3}(X$			
Voltage, current AC component		>	$X_{ac(i)} = \sqrt{(X_{rms(i)})}$) ² -(X _{dc(i)}) ²			
Voltage, current Average value			$X_{dc(i)} = \frac{1}{N}$	$\frac{1}{M}\sum_{S=0}^{M-1}X(i)s$			
Voltage, current Fundamental wave component		X1()	for harmonic voltage and	d current in the harmonic formula			
Voltage and current peak values				ax. value for M items in. value for M items			
	P(i) =			P123=P1+P2	P123 = P	1+P2+P3	
Active power	$\frac{1}{M}\sum_{s=0}^{M-1} (U(i)s \times I(i)s)$	P(i)(i+1) =	P(i)+P(i+1)	P456=P4+P5	$P_{456} = P_{456}$		
	- When connecting 3V3A.	ase line-to-line voltage for	or voltage U(i). (The same	1 form u(i)s. 3P3W3M: u _{in} = (U _{in} - U e formula is used for 3P3W2M and g power consumption (+P) and pow	3V3A.)	$u_{2n} = (U_{2n} - U_{2n})/3$	
		S(i)(i+1)	S(i)(i+1)=	$S_{123}=\frac{\sqrt{3}}{3}(S_{1}+S_{2}+S_{3})$	S123 = S	1+S2+S3	
Apparent power	$S(i) = U(i) \times I(i)$	=S(i)+S(i+1)	$\frac{\sqrt{3}}{2}(S_{(i)}+S_{(i+1)})$	10	S456 = S		
Apparent power	Select rms / mn for U ₀₀ and When connecting 3P3W3W When connecting 3V3A, us	I and 3P4W, use phase v	oltage for voltage U_{ii} . voltage U_{ii} .				
		When selecting formula type 1 and type 3					
	Q(i) =	000 0 00000		Q123=Q1+Q2	Q123=Q1	+Q2+Q3	
	si(i) _v S(i) ²-P(i) ²			Q456=Q4+Q5	Q456=Q4	+Q5+Q6	
			When selecting	g formula type 2			
Reactive power	Q(i) =	Q(i)(i+1) =		Q123=√S	6123 ² - P123 ²	,	
	$\sqrt{S_{(l)}^2 - P_{(l)}^2}$	$\sqrt{S(i)(i+1)^{2_{-}}}$			S456 ² -P456 ²	_	
	The polarity sign of structive power Q for formula type 1 and type 3 indicates leading and lagging polarity. [None] indicates lagging polarity (LAG), and [-] indicates leading polarity (LAG), and [AD]. For polarity sign sin, lead and lag for voltage waveform U ₀ and current waveform U ₀ are acquired for each measurement channel (1). When connecting 3P3W3M and JP4W, use phase voltage for voltage waveform U ₀ . 3P3W3M: us = (U ₀ = U ₀)J ₃ us = (U ₀ = U ₀ J ₃), u ₀ = (U ₀ = U ₀)J ₃ .						
	When selecting formula type 1						
	$\lambda(i) = Si(i) \frac{P(i)}{S(i)}$	$\lambda^{(i)(i+1)} = Si$	Dar. A	$\lambda_{123} = Si_{123} \frac{P_{12}}{S_{12}}$	$\frac{3}{3}$ $\lambda_{456} = s$	1456 P456 S456	
	1.01			g formula type 2			
	$\lambda^{(i)} = \left \frac{P^{(i)}}{S^{(i)}} \right $	λ (i)(i+1) :	$= \left \frac{P_{(i)(i+1)}}{S_{(i)(i+1)}} \right $	$\lambda_{123} = \frac{P_{12}}{S_{12}}$	$\lambda_{456} = \frac{P}{C}$	456	
Power factor	000			g formula type 3	<u>, p</u>	400	
	$\lambda(i) = \frac{P(i)}{S(i)}$	λ (i)(i+1	P(i)(i+1)	a Pta	$\frac{23}{1}$ $\lambda_{456} = \frac{F}{6}$	456	
	0(1)		0(1)(1+1)	512	23, 5	456 G). and [-] indicate:	
	- The polarity signs is for power factor λ for formula type 1 indicates leading and lagging polarity, [None] indicates lagging polarity (LAG), and [-] indicates leading polarity (LAG) is and indicates leading polarity (LAG) is an indicate le						
	are acquired from the sign - For formula type 3, the pe	is for Q12, Q36, and Q128. larity sign for active pov	ver P is used.				
	When selecting for	ormula type 1					
	$\phi_{(i)}=si_{(i)}\cos^{-1} \lambda_{(i)} \phi_{(i)(i+1)}=si_{(i)(i+1)}\cos^{-1} \lambda_{(i)(i+1)} \phi_{123}=si_{123}\cos^{-1} \lambda_{123} , \phi_{456}=si_{456}\cos^{-1} \lambda_{456} $						
	When selecting for		4			4	
Power phase angle	$\phi_{(i)} = \cos^{-1} \lambda_{(i)} $		$ os^{-1} \lambda_{(i)(i+1)} $	$\phi_{123} = \cos^{-1} \lambda_{12}$	$\phi_{456} = c_{10}$	25^{-1} λ_{456}	
	When selecting for	<i>,</i> ,					
	$\phi_{(i)} = \cos^{-1} \lambda_{(i)}$		$\cos^{-1}\lambda_{(i)(i+1)}$	$\phi_{123} = \cos^{-1} \lambda_{12}$			
	(LEAD).			y, [None] indicates lagging polarity			
	- For polarity sign $s_{i\mu}$ lead and lap for voltage waveform $U_{i\mu}$ and current waveform $I_{j\mu}$ are acquired for each measurement channel (i). $s_{i\mu}^{*}, s_{i\mu}^{*}$ and $s_{i\mu}^{*}$ are acquired from the signs for $Q_{i\mu}, Q_{\mu\nu}$ and $Q_{i\mu}$. For formula types $h_{\mu\nu}$ has polarity signs for active power P is used.						
Malaana aa '	- When calculating formula type 1 and type2, cos λ ₀ is used when P ≥ 0, 180-cos λ is used when P < 0.						
Voltage and current ripple factor			(X _{pk+(i)} - X 2x Xdc	(i) ×100			
X: Voltage U or C	urrent /,						

X: Voltage U or Current I, (i): Measurement channel, M: Number of samples during synchronized timing period, s: Sample point number

Motor analysis formulae

	-	
Measurement parameters	Setting	Formula
Voltage	Analog DC	$\frac{1}{M_s^{M_s}}A_s$ M: Number of samples during synchronized timing period; s: Sample point number
Pulse frequency	Pulse	Pulse frequency
Torque	Analog DC	$\frac{1}{M} \sum_{s=0}^{M-1} As \times scaling setting$ <i>M</i> : Number of samples during synchronized timing period; <i>s</i> : Sample point number
Frequency		(Measurement frequency - fc setting) × rated torque value fd setting
	Analog DC	$\frac{1}{M} \frac{M^{2}}{S^{2}} A_{S} \times scaling setting$ <i>M</i> : Number of samples during synchronized timing period; s: Sample point number
RPM	Pulse	$\frac{60 \times pulse frequency}{SI} \frac{60 \times pulse frequency}{Pulse count setting}$ The polarity sign <i>si</i> is acquired based on the A-phase pulse rising/falling edge and the B-phase pulse logic level (high/low) when direction of rotation detection is enabled in single mode.
Motor power		$Torque \times \frac{2 \times 77 \times RPM}{60} \times unit coefficient$ The unit coefficient is 1 if the torque unit is N·m, 1/1000 if mN·m, and 1000 if kN·m.
Slip		$\frac{100\times \frac{2\times60\times input trequency}{2\times60\times input trequency}}{RPM} \times \frac{pole number setting}{pole number setting}$ The input frequency is selected from 11 to 16.

High accuracy sensor (connected to input terminal Probe 1)


Model	AC/DC CURRENT SENSOR CT6862-05	AC/DC CURRENT SENSOR AC/DC CURRENT SENS CT6863-05 9709-05		AC/DC CURRENT SENSOR CT6865-05	
Appearance					
Rated primary current	50 A AC/DC	200 A AC/DC	500 A AC/DC	1000 A AC/DC	
Diameter of measurable conductors	Max.ф 24mm (0.94")	Max.φ 24 mm (0.94*)	Max.φ 36 mm (1.42")	Max.ф 36 mm (1.42*)	
Basic accuracy		.01 % f.s. , ±0.2° Hz to 400 Hz)	±0.05 %rdg.±0.01 % f.s. , ±0.2° (DC and 45 Hz to 66 Hz)	±0.05 %rdg.±0.01 % f.s. , ±0.2° (DC and 16 Hz to 66 Hz)	
Frequency characteristics (Amplitude,typical)	DC to 16 Hz : ±0.1%rdg. ±0.02%f.s. 50 kHz to 100 kHz :±2.0%rdg. ±0.05%f.s. 700 kHz to 1 MHz: ±30%rdg. ±0.05%f.s.	DC to 16 Hz : ±0.1%rdg. ±0.02%f.s. 50 kHz to 100 kHz : ±5%rdg. ±0.02%f.s. 300 kHz to 500 kHz: ±30%rdg. ±0.05%f.s.	DC to 45 Hz : ±0.2%rdg. ±0.02%f.s. 5 kHz to 10 kHz : ±2%rdg. ±0.1%f.s. 20 kHz to 100 kHz : ±30%rdg. ±0.1%f.s.	DC to 16 Hz: ±0.1%rdg. ±0.02%f.s. 500 Hz to 5 kHz: ±5%rdg. ±0.05%f.s. 10 kHz to 20 kHz: ±30%rdg. ±0.1%f.s.	
Operating Temperature	-30°C to 85°C (-22°F to 185°F)	-30°C to 85°C (-22°F to 185°F)	0°C to 50°C (-32°F to 122°F)	-30°C to 85°C (-22°F to 185°F)	
Effect of conductor position	Within ±0.01%rdg. (DC to 100 Hz)	Within ±0.01%rdg. (DC to 100 Hz)	Within ±0.05%rdg. (DC 100 A)	Within ±0.05%rdg. (AC1000 A,50/60 Hz)	
Effects of external magnetic fields	10 mA equivalent or lower (400 A/m, 60 Hz and DC)			200 mA equivalent or lower (400 A/m, 60 Hz and DC)	
Maximum rated voltage to earth	CAT III 1000 Vrms	CAT III 1000 Vrms	CAT III 1000 Vrms CAT III 1000 Vrms		
Dimensions	70W (2.76°) × 100H (3.94°) × 53D (2.09°) mm		160W (6.30") × 112H (4.41") × 50D (1.97") mm		
Mass	Approx. 340 g (12.0 oz.)	Approx. 350 g (12.3 oz.)	Approx. 850 g (30.0 oz.)	Approx. 980 g (35.3 oz)	
Derating properties	V 100 100 100 100 100 100 100 100	10 10 10 10 10 10 10 10 10 10	E 100 100 100 100 100 100 100 100 100 10	C 1 10 100 I K 10 K Frequency (Hz)	

Model	AC/DC CURRENT PROBE CT6841-05	AC/DC CURRENT PROBE CT6843-05	
Appearance			
Rated primary current	20 A AC/DC	200 A AC/DC	
Diameter of measurable conductors	Max.ф 20 mm (0.79")	Max.φ 20 mm (0.79")	
Basic accuracy	$\begin{array}{lll} \pm 0.3\% \mbox{ rdg. } \pm 0.01\% \mbox{ f.s., } \pm 0.1^{\circ} & (DC < f \le 100 \mbox{ Hz}) \\ \pm 0.3\% \mbox{ rdg. } \pm 0.05\% \mbox{ f.s., } & (DC) \end{array}$	$\begin{array}{llllllllllllllllllllllllllllllllllll$	
Frequency characteristics (Amplitude,typical)	100 Hz to 1 kHz : ±0.5%rdg. ±0.02%f.s. 1 kHz to 10 kHz : ±1.5%rdg. ±0.02%f.s. 10 kHz to 100 kHz : ±5.0%rdg. ±0.02%f.s. 10 kHz to 300 kHz : ±10%rdg. ±0.05%f.s. 300 kHz to 1 MHz : ±30%rdg. ±0.05%f.s.	100 Hz to 1 kHz : ±0.5%rdg. ±0.02%i.s. 1 kHz to 10 kHz : ±1.5%rdg. ±0.02%i.s. 10 kHz to 50 kHz : ±5.0%rdg. ±0.02%i.s. 50 kHz to 300 kHz : ±15%rdg. ±0.05%i.s. 300 kHz to 500 kHz : ±15%rdg. ±0.05%i.s.	
Operating Temperature	-40°C to 85°C (-40°F to 185°F)		
Effect of conductor position	Within ±0.1%rdg. (DC to 100 Hz)		
Effects of external magnetic fields	0.05 A equivalent or lower (400 A/m, 60Hz and DC)		
Dimensions	153W (6.02") × 67H (2.	.64") × 25D (0.98") mm	
Mass	Approx. 350 g (12.3 oz)	Approx. 370 g (13.1 oz)	
Derating properties	40°C 4 Artibert temperature 60°C 40°C 4 Artibert temperature 50°C 40°C 4	600 40°C 4 Artibert temperature (40°C 40°C 4 Arti	

Conversion cables

CONVERSION CABLE CT9900 is required to connect the following current sensors to the high accuracy sensor terminal.

For use with CT6862, CT6863, 9709, CT6865, CT6841, CT6843 When using a sensor without "-05" in the model name, Conversion Cable CT9900 must be used to make the connection.

Broadband probe (connected to input terminal Probe 2)

Model	CLAMP ON PROBE 3273-50	CLAMP ON PROBE 3274	CLAMP ON PROBE 3275	CLAMP ON PROBE 3276
Appearance	00		20	00
Frequency band	DC to 50 MHz (-3dB)	DC to 10 MHz (-3dB)	DC to 2 MHz (-3dB)	DC to 100 MHz (-3dB)
Rated primary current	30 A AC/DC	150 A AC/DC	500 A AC/DC	30 A AC/DC
Diameter of measurable conductors	5 mm dia. or less (insulated conductors)	20 mm dia. or less (insulated conductors)	20 mm dia. or less (insulated conductors)	5 mm dia. or less (insulated conductors)
Basic accuracy	0 to 30 A rms ±1.0% rdg. ±1 mV 30 A rms to 50 A peak ±2.0% rdg. (At 45 to 66 Hz, DC)	0 to 150 A rms ±1.0% rdg. ±1 mV 150 A rms to 300 A peak ±2.0% rdg. (At 45 to 66 Hz, DC)	0 to 500 A rms ±1.0% rdg. ±5 mV 500 A rms to 700 A peak ±2.0% rdg. (At 45 to 66 Hz, DC)	0 to 30 A rms ±1.0% rdg. ±1 mV 30 A rms to 50 A peak ±2.0% rdg. (At 45 to 66 Hz, DC)
Operating temperature and humidity	0°C to 40°C (32°F to 104°F) 80% rh or less (no condensation)	0°C to 40°C (32°F to 104°F) 80% rh or less (no condensation)	0°C to 40°C (32°F to 104°F) 80% rh or less (no condensation)	0°C to 40°C (32°F to 104°F) 80% rh or less (no condensation)
Effects of external magnetic fields	Max. 20 mA or equivalent (400 A/m, 60 Hz and DC)	Max. 150 mA or equivalent (400 A/m, 60 Hz and DC)	Max. 800 mA or equivalent (400 A/m, 60 Hz and DC)	Max. 5 mA or equivalent (400 A/m, 60 Hz and DC)
Dimensions	175W (6.89") × 18H(0.71") × 40D (1.57") mm Cable length: 1.5 m	176W (6.93") × 69H (2.72") × 27D(1.06") mm Cable length: 2 m	176W (6.93") × 69H (2.72") × 27D(1.06") mm Cable length: 2 m	175W (6.89") × 18H(0.71") × 40D (1.57") mm Cable length: 1.5 m
Mass	Approx. 230 g (8.1 oz)	Approx. 500 g (17.6 oz)	Approx. 520 g (18.3 oz)	Approx. 240 g (8.5 oz)
Derating properties	1 1 1 1 1 1 1 1 1 1 1 1 1 1	V 100 100 100 100 100 100 100 Frequency (Hz)	V 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	V 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

	CURRENT PROBE CT6700	CURRENT PROBE CT6701	
Appearance	60	60	
Frequency band	DC to 50 MHz (-3dB)	DC to 120 MHz (-3dB)	
Rated primary current	5 Arms AC/DC	5 Arms AC/DC	
Diameter of measurable conductors	5 mm dia. or less (insulated conductors)	5 mm dia. or less (insulated conductors)	
Basic accuracy	typical ±1.0% rdg. ±1 mV ±3.0% rdg. ±1 mV (At 45 to 66 Hz, DC)	typical ±1.0% rdg. ±1 mV ±3.0% rdg. ±1 mV (At 45 to 66 Hz, DC)	
Operating temperature and humidity	0°C to 40°C (32°F to 104°F) 80% rh or less (no condensation)	0°C to 40°C (32°F to 104°F) 80% rh or less (no condensation)	
Effects of external magnetic fields	Max. 20 mA or equivalent (400 A/m, 60 Hz and DC)	Max. 5 mA or equivalent (400 A/m, 60 Hz and DC)	
Dimensions	155W (6.10") × 18H(0.71") × 26D (1.02") mm Cable length: 1.5 m	155W (6.10") × 18H(0.71") × 26D (1.02") mm Cable length: 1.5 m	
Mass	Approx. 250 g (8.8 oz)	Approx. 250 g (8.8 oz)	
Derating properties	10 10 10 10 10 10 10 10 10 10	Wathing the formation of the formation o	

Sensor switching method

High accuracy sensor terminal: Slide the cover to the left.

When connecting CT6862-05, CT6863-05, 9709-05, CT6865-05, CT6841-05 or CT6843-05

Wideband probe terminal: Slide the cover to the right.

When connecting 3273-50, 3274, 3275, 3276, CT6700 or CT6701

Configurations

Model Order Code Number of built-in channels Motor analysis & D/A output

Wodel		Number of built in charmers	Wotor analysis a Dirtoutput		
POWER ANALYZER	PW6001-01	1ch	—		
	PW6001-02	2ch	_		
	PW6001-03	3ch	—		
	PW6001-04	4ch	—		
	PW6001-05	5ch	—		
	PW6001-06	6ch	—		
	PW6001-11	1ch	1		
	PW6001-12	2ch	1		
	PW6001-13	3ch	1		
	PW6001-14	4ch	1		
	PW6001-15	5ch	1		
	PW6001-16	6ch	1		
Accessories: Instruction n	Accessories: Instruction manual × 1, power cord × 1, D-sub 25-pin connector (PW6001-11 to -16 only) × 1				

- The optional voltage cord and current sensor are required for taking measurements.

- Specify the number of built-in channels and inclusion of Motor analysis & D/A output upon order for factory

installation. These options cannot be changed or added at a later date.

Current measurement options

Model		Rated primary current
AC/DC CURRENT SENSOR	CT6862-05	50A
AC/DC CURRENT SENSOR	CT6863-05	200A
AC/DC CURRENT SENSOR	9709-05	500A
AC/DC CURRENT SENSOR	CT6865-05	1000A
AC/DC CURRENT PROBE	CT6841-05	20A
AC/DC CURRENT PROBE	CT6843-05	200A
CLAMP ON PROBE	3273-50	30A
CLAMP ON PROBE	3274	150A
CLAMP ON PROBE	3275	500A
CLAMP ON PROBE	3276	30A
CURRENT PROBE	CT6700	5A
CURRENT PROBE	CT6701	5A

CONVERSION CABLE CT9900

For use with CT6862, CT6863, 9709, CT6865, CT6841, CT6843 When using a sensor without "-05" in the model name, Conversion Cable CT9900 must be used to make the connection.

Voltage measurement options

VOLTAGE CORD L9438-50 VOLTAGE CORD L1000

Red, black: 1 each 1000 V specifications Cable length: 3 m (9.84 ft)

Connection options CONNECTION CORD

Length : 1.6 m (5.25 ft) For motor signal input

GP-IB CONNECTOR CABLE 9151-02

HIOKI E. E. CORPORATION

81 Koizumi, Ueda, Nagano, 386-1192, Japan TEL +81-268-28-0562 FAX +81-268-28-0568 http://www.hioki.com / E-mail: os-com@hioki.co.jp

TEL +1-609-409-9109 FAX +1-609-409-9108 http://www.hiokiusa.com / E-mail: hioki@hiokiusa.com

HEADQUARTERS

HIOKI USA CORPORATION

Length: 1.5 m (4.92 ft) For external control interface straight 9pin to 9pin

9444

CATIV 600V

CATIII 1000V

Red, vellow, blue, grav: 1 each; Black; 4

1000 V specifications

Cable length: 3 m (9.84 ft)

LAN CABLE 9642

Length : 5 m (16.41 ft)

supplied with straight to

cross conversion cable

CONNECTION CABLE

Length: 1.8 m (5.91 ft) 9pin to 9pin

OPTICAL CONNECTION CABLE L6000

GRABBER CLIP 9243

Red, black: 1 each Change the tip of the VOLTAGE CORD to use

CAT III 1000V

Length: 10 m (32.8 ft)

For synchronized control

HIOKI (Shanghai) SALES & TRADING CO., LTD. TEL +86-21-63910090 FAX +86-21-63910360 http://www.hioki.cn / E-mail: info@hioki.com.cn

HIOKI INDIA PRIVATE LIMITED TEL +91-124-6590210 E-mail: hioki@hioki.in

HIOKI SINGAPORE PTE. LTD. TEL +65-6634-7677 FAX +65-6634-7477 E-mail: info-sg@hioki.com.sg

HIOKI KOREA CO., LTD. TEL +82-2-2183-8847 FAX +82-2-2183-3360 E-mail: info-kr@hioki.co.jp

All information correct as of June 30, 2015. All specifications are subject to change without notice.

The following made-to-order items are also available. Please contact your Hioki distributor or subsidiary for more information.

- Optical connection cable, Max. 500 m (1640.55 ft) length
- Rackmount fittings (EIA, JIS)
- Carrying case (hard trunk, with casters)

Note: Company names and Product names appearing in this catalog are trademarks or registered trademarks of various companies.

DISTRIBUTED BY

Septiembre, 31 - 28022 Madrid Tel. 913000191 - Fax. 913885433 www.idm-instrumentos.es - idm@idm-instrumentos.es

PW6001-16 (with 6 channels and motor analysis & D/A output)